|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbbidv | Structured version Visualization version GIF version | ||
| Description: Deduction substituting both sides of a biconditional, with 𝜑 and 𝑥 disjoint. See also sbbid 2246. (Contributed by Wolf Lammen, 6-May-2023.) (Proof shortened by Steven Nguyen, 6-Jul-2023.) | 
| Ref | Expression | 
|---|---|
| sbbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| sbbidv | ⊢ (𝜑 → ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑥]𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) | 
| 3 | spsbbi 2073 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑥]𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑥]𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 | 
| This theorem depends on definitions: df-bi 207 df-sb 2065 | 
| This theorem is referenced by: sbco4lem 2101 sbco4 2102 sbcom2 2173 eqabdv 2875 wl-equsb3 37557 wl-clabtv 37598 2reu8i 47125 ichbidv 47440 | 
| Copyright terms: Public domain | W3C validator |