MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbbidv Structured version   Visualization version   GIF version

Theorem sbbidv 2082
Description: Deduction substituting both sides of a biconditional, with 𝜑 and 𝑥 disjoint. See also sbbid 2238. (Contributed by Wolf Lammen, 6-May-2023.) (Proof shortened by Steven Nguyen, 6-Jul-2023.)
Hypothesis
Ref Expression
sbbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbbidv (𝜑 → ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑥]𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝜓(𝑥,𝑡)   𝜒(𝑥,𝑡)

Proof of Theorem sbbidv
StepHypRef Expression
1 sbbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21alrimiv 1930 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
3 spsbbi 2076 . 2 (∀𝑥(𝜓𝜒) → ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑥]𝜒))
42, 3syl 17 1 (𝜑 → ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑥]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-sb 2068
This theorem is referenced by:  sbcom2  2161  abbi2dv  2877  wl-equsb3  35711  wl-clabtv  35748  2reu8i  44605  ichbidv  44905
  Copyright terms: Public domain W3C validator