| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ichcircshi | Structured version Visualization version GIF version | ||
| Description: The setvar variables are interchangeable if they can be circularily shifted using a third setvar variable, using implicit substitution. (Contributed by AV, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| ichcircshi.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
| ichcircshi.2 | ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) |
| ichcircshi.3 | ⊢ (𝑧 = 𝑦 → (𝜒 ↔ 𝜑)) |
| Ref | Expression |
|---|---|
| ichcircshi | ⊢ [𝑥⇄𝑦]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ichcircshi.3 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝜒 ↔ 𝜑)) | |
| 2 | 1 | bicomd 223 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜒)) |
| 3 | 2 | equcoms 2019 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜒)) |
| 4 | 3 | sbievw 2093 | . . . . 5 ⊢ ([𝑧 / 𝑦]𝜑 ↔ 𝜒) |
| 5 | 4 | 2sbbii 2077 | . . . 4 ⊢ ([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝜑 ↔ [𝑥 / 𝑧][𝑦 / 𝑥]𝜒) |
| 6 | ichcircshi.2 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) | |
| 7 | 6 | bicomd 223 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝜒 ↔ 𝜓)) |
| 8 | 7 | equcoms 2019 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜒 ↔ 𝜓)) |
| 9 | 8 | sbievw 2093 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜒 ↔ 𝜓) |
| 10 | 9 | sbbii 2076 | . . . 4 ⊢ ([𝑥 / 𝑧][𝑦 / 𝑥]𝜒 ↔ [𝑥 / 𝑧]𝜓) |
| 11 | ichcircshi.1 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) | |
| 12 | 11 | bicomd 223 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜑)) |
| 13 | 12 | equcoms 2019 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝜓 ↔ 𝜑)) |
| 14 | 13 | sbievw 2093 | . . . 4 ⊢ ([𝑥 / 𝑧]𝜓 ↔ 𝜑) |
| 15 | 5, 10, 14 | 3bitri 297 | . . 3 ⊢ ([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝜑 ↔ 𝜑) |
| 16 | 15 | gen2 1796 | . 2 ⊢ ∀𝑥∀𝑦([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝜑 ↔ 𝜑) |
| 17 | df-ich 47433 | . 2 ⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑥∀𝑦([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝜑 ↔ 𝜑)) | |
| 18 | 16, 17 | mpbir 231 | 1 ⊢ [𝑥⇄𝑦]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 [wsb 2064 [wich 47432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-ich 47433 |
| This theorem is referenced by: ichexmpl1 47456 ichexmpl2 47457 |
| Copyright terms: Public domain | W3C validator |