| Metamath
Proof Explorer Theorem List (p. 469 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | smfmulc1 46801* | A sigma-measurable function multiplied by a constant is sigma-measurable. Proposition 121E (c) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfdiv 46802* | The fraction of two sigma-measurable functions is measurable. Proposition 121E (e) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) & ⊢ 𝐸 = {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfpimbor1lem1 46803* | Every open set belongs to 𝑇. This is the second step in the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐺 ∈ 𝐽) & ⊢ 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑇) | ||
| Theorem | smfpimbor1lem2 46804* | Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ 𝑃 = (◡𝐹 “ 𝐸) & ⊢ 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} ⇒ ⊢ (𝜑 → 𝑃 ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smfpimbor1 46805 | Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ 𝑃 = (◡𝐹 “ 𝐸) ⇒ ⊢ (𝜑 → 𝑃 ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smf2id 46806* | Twice the identity function is Borel sigma-measurable (just an example, to test previous general theorems). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (2 · 𝑥)) ∈ (SMblFn‘𝐵)) | ||
| Theorem | smfco 46807 | The composition of a Borel sigma-measurable function with a sigma-measurable function, is sigma-measurable. Proposition 121E (g) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐻 ∈ (SMblFn‘𝐵)) ⇒ ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfneg 46808* | The negative of a sigma-measurable function is measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ (SMblFn‘𝑆)) | ||
| Theorem | smffmptf 46809 | A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) | ||
| Theorem | smffmpt 46810* | A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) | ||
| Theorem | smflim2 46811* | The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). TODO: this has fewer distinct variable conditions than smflim 46782 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfpimcclem 46812* | Lemma for smfpimcc 46813 given the choice function 𝐶. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ 𝑍 ∈ 𝑉 & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) → (𝐶‘𝑦) ∈ 𝑦) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) ⇒ ⊢ (𝜑 → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)))) | ||
| Theorem | smfpimcc 46813* | Given a countable set of sigma-measurable functions, and a Borel set 𝐴 there exists a choice function ℎ that, for each measurable function, chooses a measurable set that, when intersected with the function's domain, gives the preimage of 𝐴. This is a generalization of the observation at the beginning of the proof of Proposition 121F of [Fremlin1] p. 39 . The statement would also be provable for uncountable sets, but in most cases it will suffice to consider the countable case, and only the axiom of countable choice will be needed. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)))) | ||
| Theorem | issmfle2d 46814* | A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,]𝑎)) ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smflimmpt 46815* | The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). 𝐴 can contain 𝑚 as a free variable, in other words it can be thought as an indexed collection 𝐴(𝑚). 𝐵 can be thought as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐴 ∣ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ 𝐵))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfsuplem1 46816* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐻:𝑍⟶𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (◡(𝐹‘𝑛) “ (-∞(,]𝐴)) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))) ⇒ ⊢ (𝜑 → (◡𝐺 “ (-∞(,]𝐴)) ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smfsuplem2 46817* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (◡𝐺 “ (-∞(,]𝐴)) ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smfsuplem3 46818* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfsup 46819* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfsupmpt 46820* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfsupxr 46821* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfinflem 46822* | The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfinf 46823* | The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfinfmpt 46824* | The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smflimsuplem1 46825* | If 𝐻 converges, the lim sup of 𝐹 is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) ⇒ ⊢ (𝜑 → dom (𝐻‘𝐾) ⊆ dom (𝐹‘𝐾)) | ||
| Theorem | smflimsuplem2 46826* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑚𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → 𝑛 ∈ 𝑍) & ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → 𝑋 ∈ dom (𝐻‘𝑛)) | ||
| Theorem | smflimsuplem3 46827* | The limit of the (𝐻‘𝑛) functions is sigma-measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) ⇒ ⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∪ 𝑘 ∈ 𝑍 ∩ 𝑛 ∈ (ℤ≥‘𝑘)dom (𝐻‘𝑛) ∣ (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)))) ∈ (SMblFn‘𝑆)) | ||
| Theorem | smflimsuplem4 46828* | If 𝐻 converges, the lim sup of 𝐹 is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝑥 ∈ ∩ 𝑛 ∈ (ℤ≥‘𝑁)dom (𝐻‘𝑛)) & ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) | ||
| Theorem | smflimsuplem5 46829* | 𝐻 converges to the superior limit of 𝐹. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑚𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝑁) ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) | ||
| Theorem | smflimsuplem6 46830* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑚𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ dom ⇝ ) | ||
| Theorem | smflimsuplem7 46831* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} & ⊢ 𝐸 = (𝑘 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑘)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑘 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑘) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) ⇒ ⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ (ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ }) | ||
| Theorem | smflimsuplem8 46832* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ 𝐸 = (𝑘 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑘)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑘 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑘) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smflimsup 46833* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smflimsupmpt 46834* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . 𝐴 can contain 𝑚 as a free variable, in other words it can be thought of as an indexed collection 𝐴(𝑚). 𝐵 can be thought of as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐴 ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfliminflem 46835* | The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfliminf 46836* | The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfliminfmpt 46837* | The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . 𝐴 can contain 𝑚 as a free variable, in other words it can be thought of as an indexed collection 𝐴(𝑚). 𝐵 can be thought of as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐴 ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim inf‘(𝑚 ∈ 𝑍 ↦ 𝐵))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | adddmmbl 46838 | If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) ⇒ ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 + 𝐷)) ∈ 𝑆) | ||
| Theorem | adddmmbl2 46839 | If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐺 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) & ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) & ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) ⇒ ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) | ||
| Theorem | muldmmbl 46840 | If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) ⇒ ⊢ (𝜑 → dom (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ (𝐶 · 𝐷)) ∈ 𝑆) | ||
| Theorem | muldmmbl2 46841 | If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐺 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) & ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) & ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))) ⇒ ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) | ||
| Theorem | smfdmmblpimne 46842* | If a measurable function w.r.t. to a sigma-algebra has domain in the sigma-algebra, the set of elements that are not mapped to a given real, is in the sigma-algebra (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝐶} ⇒ ⊢ (𝜑 → 𝐷 ∈ 𝑆) | ||
| Theorem | smfdivdmmbl 46843 | If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of [Fremlin1] p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator (it is needed only for the function at the denominator). (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐷) ∈ (SMblFn‘𝑆)) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ 𝐷 ≠ 0} ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐸) ∈ 𝑆) | ||
| Theorem | smfpimne 46844* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value in the extended reals is in the subspace of sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smfpimne2 46845* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value is in the subspace sigma-algebra induced by its domain. Notice that 𝐴 is not assumed to be an extended real. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smfdivdmmbl2 46846 | If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of [Fremlin1] p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator. It is required only for the function at the denominator. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐺 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) & ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) & ⊢ 𝐷 = {𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} & ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ 𝐷) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))) ⇒ ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) | ||
| Theorem | fsupdm 46847* | The domain of the sup function is defined in Proposition 121F (b) of [Fremlin1], p. 38. Note that this definition of the sup function is quite general, as it does not require the original functions to be sigma-measurable, and it could be applied to uncountable sets of functions. The equality proved here is part of the proof of the fourth statement of Proposition 121H in [Fremlin1], p. 39. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑥𝐹 & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ*) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) ⇒ ⊢ (𝜑 → 𝐷 = ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚)) | ||
| Theorem | fsupdm2 46848* | The domain of the sup function is defined in Proposition 121F (b) of [Fremlin1], p. 38. Note that this definition of the sup function is quite general, as it does not require the original functions to be sigma-measurable, and it could be applied to uncountable sets of functions. The equality proved here is part of the proof of the fourth statement of Proposition 121H in [Fremlin1], p. 39. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑥𝐹 & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ*) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) ⇒ ⊢ (𝜑 → dom 𝐺 = ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚)) | ||
| Theorem | smfsupdmmbllem 46849* | If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their supremum function has the domain in the sigma-algebra. This is the fourth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ ((𝐹‘𝑛)‘𝑥) < 𝑚})) & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | ||
| Theorem | smfsupdmmbl 46850* | If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their supremum function has the domain in the sigma-algebra. This is the fourth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | ||
| Theorem | finfdm 46851* | The domain of the inf function is defined in Proposition 121F (c) of [Fremlin1], p. 39. See smfinf 46823. Note that this definition of the inf function is quite general, as it does not require the original functions to be sigma-measurable, and it could be applied to uncountable sets of functions. The equality proved here is part of the proof of the fifth statement of Proposition 121H in [Fremlin1], p. 39. (Contributed by Glauco Siliprandi, 1-Feb-2025.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑥𝐹 & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ*) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)})) ⇒ ⊢ (𝜑 → 𝐷 = ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚)) | ||
| Theorem | finfdm2 46852* | The domain of the inf function is defined in Proposition 121F (c) of [Fremlin1], p. 39. See smfinf 46823. Note that this definition of the inf function is quite general, as it does not require the original functions to be sigma-measurable, and it could be applied to uncountable sets of functions. The equality proved here is part of the proof of the fifth statement of Proposition 121H in [Fremlin1], p. 39. (Contributed by Glauco Siliprandi, 1-Feb-2025.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑥𝐹 & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ*) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)})) ⇒ ⊢ (𝜑 → dom 𝐺 = ∪ 𝑚 ∈ ℕ ∩ 𝑛 ∈ 𝑍 ((𝐻‘𝑛)‘𝑚)) | ||
| Theorem | smfinfdmmbllem 46853* | If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their infimum function has the domain in the sigma-algebra. This is the fifth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 1-Feb-2025.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)})) ⇒ ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | ||
| Theorem | smfinfdmmbl 46854* | If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their infimum function has the domain in the sigma-algebra. This is the fifth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 1-Feb-2025.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | ||
| Theorem | sigarval 46855* | Define the signed area by treating complex numbers as vectors with two components. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) | ||
| Theorem | sigarim 46856* | Signed area takes value in reals. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) ∈ ℝ) | ||
| Theorem | sigarac 46857* | Signed area is anticommutative. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴)) | ||
| Theorem | sigaraf 46858* | Signed area is additive by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶)𝐺𝐵) = ((𝐴𝐺𝐵) + (𝐶𝐺𝐵))) | ||
| Theorem | sigarmf 46859* | Signed area is additive (with respect to subtraction) by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)𝐺𝐵) = ((𝐴𝐺𝐵) − (𝐶𝐺𝐵))) | ||
| Theorem | sigaras 46860* | Signed area is additive by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺(𝐵 + 𝐶)) = ((𝐴𝐺𝐵) + (𝐴𝐺𝐶))) | ||
| Theorem | sigarms 46861* | Signed area is additive (with respect to subtraction) by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺(𝐵 − 𝐶)) = ((𝐴𝐺𝐵) − (𝐴𝐺𝐶))) | ||
| Theorem | sigarls 46862* | Signed area is linear by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = ((𝐴𝐺𝐵) · 𝐶)) | ||
| Theorem | sigarid 46863* | Signed area of a flat parallelogram is zero. (Contributed by Saveliy Skresanov, 20-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ (𝐴 ∈ ℂ → (𝐴𝐺𝐴) = 0) | ||
| Theorem | sigarexp 46864* | Expand the signed area formula by linearity. (Contributed by Saveliy Skresanov, 20-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = (((𝐴𝐺𝐵) − (𝐴𝐺𝐶)) − (𝐶𝐺𝐵))) | ||
| Theorem | sigarperm 46865* | Signed area (𝐴 − 𝐶)𝐺(𝐵 − 𝐶) acts as a double area of a triangle 𝐴𝐵𝐶. Here we prove that cyclically permuting the vertices doesn't change the area. (Contributed by Saveliy Skresanov, 20-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴))) | ||
| Theorem | sigardiv 46866* | If signed area between vectors 𝐵 − 𝐴 and 𝐶 − 𝐴 is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → ¬ 𝐶 = 𝐴) & ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = 0) ⇒ ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℝ) | ||
| Theorem | sigarimcd 46867* | Signed area takes value in complex numbers. Deduction version. (Contributed by Saveliy Skresanov, 23-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ⇒ ⊢ (𝜑 → (𝐴𝐺𝐵) ∈ ℂ) | ||
| Theorem | sigariz 46868* | If signed area is zero, the signed area with swapped arguments is also zero. Deduction version. (Contributed by Saveliy Skresanov, 23-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) & ⊢ (𝜑 → (𝐴𝐺𝐵) = 0) ⇒ ⊢ (𝜑 → (𝐵𝐺𝐴) = 0) | ||
| Theorem | sigarcol 46869* | Given three points 𝐴, 𝐵 and 𝐶 such that ¬ 𝐴 = 𝐵, the point 𝐶 lies on the line going through 𝐴 and 𝐵 iff the corresponding signed area is zero. That justifies the usage of signed area as a collinearity indicator. (Contributed by Saveliy Skresanov, 22-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → ¬ 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0 ↔ ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵))))) | ||
| Theorem | sharhght 46870* | Let 𝐴𝐵𝐶 be a triangle, and let 𝐷 lie on the line 𝐴𝐵. Then (doubled) areas of triangles 𝐴𝐷𝐶 and 𝐶𝐷𝐵 relate as lengths of corresponding bases 𝐴𝐷 and 𝐷𝐵. (Contributed by Saveliy Skresanov, 23-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴 − 𝐷)𝐺(𝐵 − 𝐷)) = 0)) ⇒ ⊢ (𝜑 → (((𝐶 − 𝐴)𝐺(𝐷 − 𝐴)) · (𝐵 − 𝐷)) = (((𝐶 − 𝐵)𝐺(𝐷 − 𝐵)) · (𝐴 − 𝐷))) | ||
| Theorem | sigaradd 46871* | Subtracting (double) area of 𝐴𝐷𝐶 from 𝐴𝐵𝐶 yields the (double) area of 𝐷𝐵𝐶. (Contributed by Saveliy Skresanov, 23-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴 − 𝐷)𝐺(𝐵 − 𝐷)) = 0)) ⇒ ⊢ (𝜑 → (((𝐵 − 𝐶)𝐺(𝐴 − 𝐶)) − ((𝐷 − 𝐶)𝐺(𝐴 − 𝐶))) = ((𝐵 − 𝐶)𝐺(𝐷 − 𝐶))) | ||
| Theorem | cevathlem1 46872 | Ceva's theorem first lemma. Multiplies three identities and divides by the common factors. (Contributed by Saveliy Skresanov, 24-Sep-2017.) |
| ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) & ⊢ (𝜑 → (𝐺 ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ 𝐾 ∈ ℂ)) & ⊢ (𝜑 → (𝐴 ≠ 0 ∧ 𝐸 ≠ 0 ∧ 𝐶 ≠ 0)) & ⊢ (𝜑 → ((𝐴 · 𝐵) = (𝐶 · 𝐷) ∧ (𝐸 · 𝐹) = (𝐴 · 𝐺) ∧ (𝐶 · 𝐻) = (𝐸 · 𝐾))) ⇒ ⊢ (𝜑 → ((𝐵 · 𝐹) · 𝐻) = ((𝐷 · 𝐺) · 𝐾)) | ||
| Theorem | cevathlem2 46873* | Ceva's theorem second lemma. Relate (doubled) areas of triangles 𝐶𝐴𝑂 and 𝐴𝐵𝑂 with of segments 𝐵𝐷 and 𝐷𝐶. (Contributed by Saveliy Skresanov, 24-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) & ⊢ (𝜑 → 𝑂 ∈ ℂ) & ⊢ (𝜑 → (((𝐴 − 𝑂)𝐺(𝐷 − 𝑂)) = 0 ∧ ((𝐵 − 𝑂)𝐺(𝐸 − 𝑂)) = 0 ∧ ((𝐶 − 𝑂)𝐺(𝐹 − 𝑂)) = 0)) & ⊢ (𝜑 → (((𝐴 − 𝐹)𝐺(𝐵 − 𝐹)) = 0 ∧ ((𝐵 − 𝐷)𝐺(𝐶 − 𝐷)) = 0 ∧ ((𝐶 − 𝐸)𝐺(𝐴 − 𝐸)) = 0)) & ⊢ (𝜑 → (((𝐴 − 𝑂)𝐺(𝐵 − 𝑂)) ≠ 0 ∧ ((𝐵 − 𝑂)𝐺(𝐶 − 𝑂)) ≠ 0 ∧ ((𝐶 − 𝑂)𝐺(𝐴 − 𝑂)) ≠ 0)) ⇒ ⊢ (𝜑 → (((𝐶 − 𝑂)𝐺(𝐴 − 𝑂)) · (𝐵 − 𝐷)) = (((𝐴 − 𝑂)𝐺(𝐵 − 𝑂)) · (𝐷 − 𝐶))) | ||
| Theorem | cevath 46874* |
Ceva's theorem. Let 𝐴𝐵𝐶 be a triangle and let points 𝐹,
𝐷 and 𝐸 lie on sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐴
correspondingly. Suppose that cevians 𝐴𝐷, 𝐵𝐸 and 𝐶𝐹
intersect at one point 𝑂. Then triangle's sides are
partitioned
into segments and their lengths satisfy a certain identity. Here we
obtain a bit stronger version by using complex numbers themselves
instead of their absolute values.
The proof goes by applying cevathlem2 46873 three times and then using cevathlem1 46872 to multiply obtained identities and prove the theorem. In the theorem statement we are using function 𝐺 as a collinearity indicator. For justification of that use, see sigarcol 46869. This is Metamath 100 proof #61. (Contributed by Saveliy Skresanov, 24-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) & ⊢ (𝜑 → 𝑂 ∈ ℂ) & ⊢ (𝜑 → (((𝐴 − 𝑂)𝐺(𝐷 − 𝑂)) = 0 ∧ ((𝐵 − 𝑂)𝐺(𝐸 − 𝑂)) = 0 ∧ ((𝐶 − 𝑂)𝐺(𝐹 − 𝑂)) = 0)) & ⊢ (𝜑 → (((𝐴 − 𝐹)𝐺(𝐵 − 𝐹)) = 0 ∧ ((𝐵 − 𝐷)𝐺(𝐶 − 𝐷)) = 0 ∧ ((𝐶 − 𝐸)𝐺(𝐴 − 𝐸)) = 0)) & ⊢ (𝜑 → (((𝐴 − 𝑂)𝐺(𝐵 − 𝑂)) ≠ 0 ∧ ((𝐵 − 𝑂)𝐺(𝐶 − 𝑂)) ≠ 0 ∧ ((𝐶 − 𝑂)𝐺(𝐴 − 𝑂)) ≠ 0)) ⇒ ⊢ (𝜑 → (((𝐴 − 𝐹) · (𝐶 − 𝐸)) · (𝐵 − 𝐷)) = (((𝐹 − 𝐵) · (𝐸 − 𝐴)) · (𝐷 − 𝐶))) | ||
| Theorem | simpcntrab 46875 | The center of a simple group is trivial or the group is abelian. (Contributed by SS, 3-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntr‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel)) | ||
| Theorem | et-ltneverrefl 46876 | Less-than class is never reflexive. (Contributed by Ender Ting, 22-Nov-2024.) Prefer to specify theorem domain and then apply ltnri 11290. (New usage is discouraged.) |
| ⊢ ¬ 𝐴 < 𝐴 | ||
| Theorem | et-equeucl 46877 | Alternative proof that equality is left-Euclidean, using ax7 2016 directly instead of utility theorems; done for practice. (Contributed by Ender Ting, 21-Dec-2024.) |
| ⊢ (𝑥 = 𝑧 → (𝑦 = 𝑧 → 𝑥 = 𝑦)) | ||
| Theorem | et-sqrtnegnre 46878 | The square root of a negative number is not a real number. (Contributed by Ender Ting, 5-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ¬ (√‘𝐴) ∈ ℝ) | ||
| Theorem | ormklocald 46879* | If elements of a certain sequence are ordered with respect to a certain relation, then its consecutive elements satisfy that relation (so-called "local monotonicity"). (Contributed by Ender Ting, 30-Apr-2025.) |
| ⊢ (𝜑 → 𝑅 Or 𝑆) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(𝑇 + 1))(𝐵‘𝑘) ∈ 𝑆) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) | ||
| Theorem | ormkglobd 46880* | If all adjacent elements of a certain sequence are ordered according to a relation which is a total order on S, then any element is so related to anything to right of it (so-called "global monotonicity"). Deduction form. (Contributed by Ender Ting, 30-Apr-2025.) |
| ⊢ (𝜑 → 𝑅 Or 𝑆) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(𝑇 + 1))(𝐵‘𝑘) ∈ 𝑆) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) | ||
| Theorem | natlocalincr 46881* | Global monotonicity on half-open range implies local monotonicity. Inference form. (Contributed by Ender Ting, 22-Nov-2024.) |
| ⊢ ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡)) ⇒ ⊢ ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘) < (𝐵‘(𝑘 + 1)) | ||
| Theorem | natglobalincr 46882* | Local monotonicity on half-open integer range implies global monotonicity. Inference form. (Contributed by Ender Ting, 23-Nov-2024.) |
| ⊢ ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘) < (𝐵‘(𝑘 + 1)) & ⊢ 𝑇 ∈ ℤ ⇒ ⊢ ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ ((𝑘 + 1)...𝑇)(𝐵‘𝑘) < (𝐵‘𝑡) | ||
| Syntax | cupword 46883 | Extend class notation to include the set of strictly increasing sequences. |
| class UpWord 𝑆 | ||
| Definition | df-upword 46884* | Strictly increasing sequence is a sequence, adjacent elements of which increase. (Contributed by Ender Ting, 19-Nov-2024.) |
| ⊢ UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} | ||
| Theorem | upwordnul 46885 | Empty set is an increasing sequence for every range. (Contributed by Ender Ting, 19-Nov-2024.) |
| ⊢ ∅ ∈ UpWord 𝑆 | ||
| Theorem | upwordisword 46886 | Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024.) |
| ⊢ (𝐴 ∈ UpWord 𝑆 → 𝐴 ∈ Word 𝑆) | ||
| Theorem | singoutnword 46887 | Singleton with character out of range 𝑉 is not a word for that range. (Contributed by Ender Ting, 21-Nov-2024.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (¬ 𝐴 ∈ 𝑉 → ¬ 〈“𝐴”〉 ∈ Word 𝑉) | ||
| Theorem | singoutnupword 46888 | Singleton with character out of range 𝑆 is not an increasing sequence for that range. (Contributed by Ender Ting, 22-Nov-2024.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (¬ 𝐴 ∈ 𝑆 → ¬ 〈“𝐴”〉 ∈ UpWord 𝑆) | ||
| Theorem | upwordsing 46889 | Singleton is an increasing sequence for any compatible range. (Contributed by Ender Ting, 21-Nov-2024.) |
| ⊢ 𝐴 ∈ 𝑆 ⇒ ⊢ 〈“𝐴”〉 ∈ UpWord 𝑆 | ||
| Theorem | upwordsseti 46890 | Strictly increasing sequences with a set given for range form a set. (Contributed by Ender Ting, 21-Nov-2024.) |
| ⊢ 𝑆 ∈ V ⇒ ⊢ UpWord 𝑆 ∈ V | ||
| Theorem | tworepnotupword 46891 | Concatenation of identical singletons is never an increasing sequence. (Contributed by Ender Ting, 22-Nov-2024.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ¬ (〈“𝐴”〉 ++ 〈“𝐴”〉) ∈ UpWord 𝑆 | ||
| Theorem | upwrdfi 46892* | There is a finite number of strictly increasing sequences of a given length over finite alphabet. Trivially holds for invalid lengths where there're zero matching sequences. (Contributed by Ender Ting, 5-Jan-2024.) |
| ⊢ (𝑆 ∈ Fin → {𝑎 ∈ UpWord 𝑆 ∣ (♯‘𝑎) = 𝑇} ∈ Fin) | ||
| Theorem | evenwodadd 46893 | If an integer is multiplied by its sum with an odd number (thus changing its parity), the result is even. (Contributed by Ender Ting, 30-Apr-2025.) |
| ⊢ (𝜑 → 𝑖 ∈ ℤ) & ⊢ (𝜑 → 𝑗 ∈ ℤ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑗) ⇒ ⊢ (𝜑 → 2 ∥ (𝑖 · (𝑖 + 𝑗))) | ||
| Theorem | squeezedltsq 46894 | If a real value is squeezed between two others, its square is less than square of at least one of them. Deduction form. (Contributed by Ender Ting, 31-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → ((𝐵 · 𝐵) < (𝐴 · 𝐴) ∨ (𝐵 · 𝐵) < (𝐶 · 𝐶))) | ||
| Theorem | lambert0 46895 | A value of Lambert W (product logarithm) function at zero. (Contributed by Ender Ting, 13-Nov-2025.) |
| ⊢ 𝑅 = ◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥))) ⇒ ⊢ 0𝑅0 | ||
| Theorem | lamberte 46896 | A value of Lambert W (product logarithm) function at e. (Contributed by Ender Ting, 13-Nov-2025.) |
| ⊢ 𝑅 = ◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥))) ⇒ ⊢ e𝑅1 | ||
| Theorem | hirstL-ax3 46897 | The third axiom of a system called "L" but proven to be a theorem since set.mm uses a different third axiom. This is named hirst after Holly P. Hirst and Jeffry L. Hirst. Axiom A3 of [Mendelson] p. 35. (Contributed by Jarvin Udandy, 7-Feb-2015.) (Proof modification is discouraged.) |
| ⊢ ((¬ 𝜑 → ¬ 𝜓) → ((¬ 𝜑 → 𝜓) → 𝜑)) | ||
| Theorem | ax3h 46898 | Recover ax-3 8 from hirstL-ax3 46897. (Contributed by Jarvin Udandy, 3-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑)) | ||
| Theorem | aibandbiaiffaiffb 46899 | A closed form showing (a implies b and b implies a) same-as (a same-as b). (Contributed by Jarvin Udandy, 3-Sep-2016.) |
| ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ (𝜑 ↔ 𝜓)) | ||
| Theorem | aibandbiaiaiffb 46900 | A closed form showing (a implies b and b implies a) implies (a same-as b). (Contributed by Jarvin Udandy, 3-Sep-2016.) |
| ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |