| Metamath
Proof Explorer Theorem List (p. 469 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | iccvonmbl 46801* | Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝑆 = dom (voln‘𝑋) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) ⇒ ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) ∈ 𝑆) | ||
| Theorem | vonioolem1 46802* | The sequence of the measures of the half-open intervals converges to the measure of their union. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) < (𝐵‘𝑘)) & ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈ 𝑋 (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘))) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − ((𝐶‘𝑛)‘𝑘))) & ⊢ 𝐸 = inf(ran (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) − (𝐴‘𝑘))), ℝ, < ) & ⊢ 𝑁 = ((⌊‘(1 / 𝐸)) + 1) & ⊢ 𝑍 = (ℤ≥‘𝑁) ⇒ ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) | ||
| Theorem | vonioolem2 46803* | The n-dimensional Lebesgue measure of open intervals. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) < (𝐵‘𝑘)) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) & ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) + (1 / 𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈ 𝑋 (((𝐶‘𝑛)‘𝑘)[,)(𝐵‘𝑘))) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) | ||
| Theorem | vonioo 46804* | The n-dimensional Lebesgue measure of an open interval. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) & ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)) | ||
| Theorem | vonicclem1 46805* | The sequence of the measures of the half-open intervals converges to the measure of their intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ≤ (𝐵‘𝑘)) & ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) | ||
| Theorem | vonicclem2 46806* | The n-dimensional Lebesgue measure of closed intervals. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ≤ (𝐵‘𝑘)) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) & ⊢ 𝐶 = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)((𝐶‘𝑛)‘𝑘))) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) | ||
| Theorem | vonicc 46807* | The n-dimensional Lebesgue measure of a closed interval. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) & ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)) | ||
| Theorem | snvonmbl 46808 | A n-dimensional singleton is Lebesgue measurable. This is the first statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) ⇒ ⊢ (𝜑 → {𝐴} ∈ dom (voln‘𝑋)) | ||
| Theorem | vonn0ioo 46809* | The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)(,)(𝐵‘𝑘)) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | ||
| Theorem | vonn0icc 46810* | The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐵‘𝑘)))) | ||
| Theorem | ctvonmbl 46811 | Any n-dimensional countable set is Lebesgue measurable. This is the second statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐴 ≼ ω) ⇒ ⊢ (𝜑 → 𝐴 ∈ dom (voln‘𝑋)) | ||
| Theorem | vonn0ioo2 46812* | The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 (𝐴(,)𝐵) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) | ||
| Theorem | vonsn 46813 | The n-dimensional Lebesgue measure of a singleton is zero. This is the first statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘{𝐴}) = 0) | ||
| Theorem | vonn0icc2 46814* | The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) & ⊢ 𝐼 = X𝑘 ∈ 𝑋 (𝐴[,]𝐵) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,]𝐵))) | ||
| Theorem | vonct 46815 | The n-dimensional Lebesgue measure of any countable set is zero. This is the second statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) & ⊢ (𝜑 → 𝐴 ≼ ω) ⇒ ⊢ (𝜑 → ((voln‘𝑋)‘𝐴) = 0) | ||
| Theorem | vitali2 46816 | There are non-measurable sets (the Axiom of Choice is used, in the invoked weth 10393). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ dom vol ⊊ 𝒫 ℝ | ||
Proofs for most of the theorems in section 121 of [Fremlin1]. Real-valued functions are considered, and measurability is defined with respect to an arbitrary sigma-algebra. When the sigma-algebra on the domain is the Lebesgue measure on the reals, then all real-valued measurable functions in the sense of df-mbf 25548 are also sigma-measurable, but the definition in this section considers as measurable functions, some that are not measurable in the sense of df-mbf 25548 (see mbfpsssmf 46905 and smfmbfcex 46882). | ||
| Syntax | csmblfn 46817 | Extend class notation with the class of real-valued measurable functions w.r.t. sigma-algebras. |
| class SMblFn | ||
| Definition | df-smblfn 46818* | Define a real-valued measurable function w.r.t. a given sigma-algebra. See Definition 121C of [Fremlin1] p. 36 and Definition 135E (b) of [Fremlin1] p. 80 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ SMblFn = (𝑠 ∈ SAlg ↦ {𝑓 ∈ (ℝ ↑pm ∪ 𝑠) ∣ ∀𝑎 ∈ ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓)}) | ||
| Theorem | pimltmnf2f 46819 | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2024.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = ∅) | ||
| Theorem | pimltmnf2 46820* | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = ∅) | ||
| Theorem | preimagelt 46821* | The preimage of a right-open, unbounded below interval, is the complement of a left-closed unbounded above interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵}) = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶}) | ||
| Theorem | preimalegt 46822* | The preimage of a left-open, unbounded above interval, is the complement of a right-closed unbounded below interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵}) | ||
| Theorem | pimconstlt0 46823* | Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound less than or equal to the constant, is the empty set. Second part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ≤ 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = ∅) | ||
| Theorem | pimconstlt1 46824* | Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound larger than the constant, is the whole domain. First part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = 𝐴) | ||
| Theorem | pimltpnff 46825 | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} = 𝐴) | ||
| Theorem | pimltpnf 46826* | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 20-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} = 𝐴) | ||
| Theorem | pimgtpnf2f 46827 | Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = ∅) | ||
| Theorem | pimgtpnf2 46828* | Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = ∅) | ||
| Theorem | salpreimagelt 46829* | If all the preimages of left-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (iv) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐴 = ∪ 𝑆 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 ≤ 𝐵} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) | ||
| Theorem | pimrecltpos 46830 | The preimage of an unbounded below, open interval, with positive upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥 ∈ 𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥 ∈ 𝐴 ∣ 𝐵 < 0})) | ||
| Theorem | salpreimalegt 46831* | If all the preimages of right-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of left-open, unbounded above intervals, belong to the sigma-algebra. (ii) implies (iii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐴 = ∪ 𝑆 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝑎} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵} ∈ 𝑆) | ||
| Theorem | pimiooltgt 46832* | The preimage of an open interval is the intersection of the preimage of an unbounded below open interval and an unbounded above open interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐿 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝐿(,)𝑅)} = ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∩ {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵})) | ||
| Theorem | preimaicomnf 46833* | Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) | ||
| Theorem | pimltpnf2f 46834 | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 15-Dec-2024.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) | ||
| Theorem | pimltpnf2 46835* | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) | ||
| Theorem | pimgtmnf2 46836* | Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < (𝐹‘𝑥)} = 𝐴) | ||
| Theorem | pimdecfgtioc 46837* | Given a nonincreasing function, the preimage of an unbounded above, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} & ⊢ 𝑆 = sup(𝑌, ℝ*, < ) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ 𝐼 = (-∞(,]𝑆) ⇒ ⊢ (𝜑 → 𝑌 = (𝐼 ∩ 𝐴)) | ||
| Theorem | pimincfltioc 46838* | Given a nondecreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} & ⊢ 𝑆 = sup(𝑌, ℝ*, < ) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ 𝐼 = (-∞(,]𝑆) ⇒ ⊢ (𝜑 → 𝑌 = (𝐼 ∩ 𝐴)) | ||
| Theorem | pimdecfgtioo 46839* | Given a nondecreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage does not belong to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} & ⊢ 𝑆 = sup(𝑌, ℝ*, < ) & ⊢ (𝜑 → ¬ 𝑆 ∈ 𝑌) & ⊢ 𝐼 = (-∞(,)𝑆) ⇒ ⊢ (𝜑 → 𝑌 = (𝐼 ∩ 𝐴)) | ||
| Theorem | pimincfltioo 46840* | Given a nondecreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage does not belong to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} & ⊢ 𝑆 = sup(𝑌, ℝ*, < ) & ⊢ (𝜑 → ¬ 𝑆 ∈ 𝑌) & ⊢ 𝐼 = (-∞(,)𝑆) ⇒ ⊢ (𝜑 → 𝑌 = (𝐼 ∩ 𝐴)) | ||
| Theorem | preimaioomnf 46841* | Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) | ||
| Theorem | preimageiingt 46842* | A preimage of a left-closed, unbounded above interval, expressed as an indexed intersection of preimages of open, unbounded above intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} = ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}) | ||
| Theorem | preimaleiinlt 46843* | A preimage of a left-open, right-closed, unbounded below interval, expressed as an indexed intersection of preimages of open, unbound below intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} = ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) | ||
| Theorem | pimgtmnff 46844 | Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} = 𝐴) | ||
| Theorem | pimgtmnf 46845* | Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 20-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} = 𝐴) | ||
| Theorem | pimrecltneg 46846 | The preimage of an unbounded below, open interval, with negative upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 0) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ((1 / 𝐶)(,)0)}) | ||
| Theorem | salpreimagtge 46847* | If all the preimages of left-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of left-closed, unbounded above intervals, belong to the sigma-algebra. (iii) implies (iv) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} ∈ 𝑆) | ||
| Theorem | salpreimaltle 46848* | If all the preimages of right-open, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-closed, unbounded below intervals, belong to the sigma-algebra. (i) implies (ii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆) | ||
| Theorem | issmflem 46849* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) | ||
| Theorem | issmf 46850* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) | ||
| Theorem | salpreimalelt 46851* | If all the preimages of right-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (ii) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐴 = ∪ 𝑆 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝑎} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) | ||
| Theorem | salpreimagtlt 46852* | If all the preimages of lef-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (iii) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐴 = ∪ 𝑆 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 < 𝐵} ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) | ||
| Theorem | smfpreimalt 46853* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smff 46854 | A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) | ||
| Theorem | smfdmss 46855 | The domain of a function measurable w.r.t. to a sigma-algebra, is a subset of the set underlying the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) | ||
| Theorem | issmff 46856* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) | ||
| Theorem | issmfd 46857* | A sufficient condition for "𝐹 being a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfpreimaltf 46858* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | issmfdf 46859* | A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | sssmf 46860 | The restriction of a sigma-measurable function, is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ (SMblFn‘𝑆)) | ||
| Theorem | mbfresmf 46861 | A real-valued measurable function is a sigma-measurable function (w.r.t. the Lebesgue measure on the Reals). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) & ⊢ 𝑆 = dom vol ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | cnfsmf 46862 | A continuous function is measurable. Proposition 121D (b) of [Fremlin1] p. 36 is a special case of this theorem, where the topology on the domain is induced by the standard topology on n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) & ⊢ 𝑆 = (SalGen‘𝐽) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | incsmflem 46863* | A nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} & ⊢ 𝐶 = sup(𝑌, ℝ*, < ) & ⊢ 𝐷 = (-∞(,)𝐶) & ⊢ 𝐸 = (-∞(,]𝐶) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) | ||
| Theorem | incsmf 46864* | A real-valued, nondecreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) | ||
| Theorem | smfsssmf 46865 | If a function is measurable w.r.t. to a sigma-algebra, then it is measurable w.r.t. to a larger sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑅 ∈ SAlg) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝑅 ⊆ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑅)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | issmflelem 46866* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (ii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | issmfle 46867* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (ii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)))) | ||
| Theorem | smfpimltmpt 46868* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) | ||
| Theorem | smfpimltxr 46869* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | issmfdmpt 46870* | A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ (𝑆 ↾t 𝐴)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfconst 46871* | Given a sigma-algebra over a base set X, every partial real-valued constant function is measurable. Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | sssmfmpt 46872* | The restriction of a sigma-measurable function is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | ||
| Theorem | cnfrrnsmf 46873 | A function, continuous from the standard topology on the space of n-dimensional reals to the standard topology on the reals, is Borel measurable. Proposition 121D (b) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝑋)) & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) & ⊢ 𝐵 = (SalGen‘𝐽) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) | ||
| Theorem | smfid 46874* | The identity function is Borel sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (SMblFn‘𝐵)) | ||
| Theorem | bormflebmf 46875 | A Borel measurable function is Lebesgue measurable. Proposition 121D (a) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝐵 = (SalGen‘(TopOpen‘(ℝ^‘𝑋))) & ⊢ 𝐿 = dom (voln‘𝑋) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐿)) | ||
| Theorem | smfpreimale 46876* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of a closed interval unbounded below is in the subspace sigma-algebra induced by its domain. See Proposition 121B (ii) of [Fremlin1] p. 35 (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | issmfgtlem 46877* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-open intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | issmfgt 46878* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-open intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iii) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)))) | ||
| Theorem | issmfled 46879* | A sufficient condition for "𝐹 being a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfpimltxrmptf 46880* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) | ||
| Theorem | smfpimltxrmpt 46881* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 20-Dec-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅} ∈ (𝑆 ↾t 𝐴)) | ||
| Theorem | smfmbfcex 46882* | A constant function, with non-lebesgue-measurable domain is a sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) but it is not a measurable functions ( w.r.t. to df-mbf 25548). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑆 = dom vol & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 0) ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn)) | ||
| Theorem | issmfgtd 46883* | A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | smfpreimagt 46884* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smfaddlem1 46885* | Given the sum of two functions, the preimage of an unbounded below, open interval, expressed as the countable union of intersections of preimages of both functions. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅}) ⇒ ⊢ (𝜑 → {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 + 𝐷) < 𝑅} = ∪ 𝑝 ∈ ℚ ∪ 𝑞 ∈ (𝐾‘𝑝){𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 < 𝑝 ∧ 𝐷 < 𝑞)}) | ||
| Theorem | smfaddlem2 46886* | The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅}) ⇒ ⊢ (𝜑 → {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ∈ (𝑆 ↾t (𝐴 ∩ 𝐶))) | ||
| Theorem | smfadd 46887* | The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ (𝐵 + 𝐷)) ∈ (SMblFn‘𝑆)) | ||
| Theorem | decsmflem 46888* | A nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} & ⊢ 𝐶 = sup(𝑌, ℝ*, < ) & ⊢ 𝐷 = (-∞(,)𝐶) & ⊢ 𝐸 = (-∞(,]𝐶) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) | ||
| Theorem | decsmf 46889* | A real-valued, nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝐵)) | ||
| Theorem | smfpreimagtf 46890* | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | issmfgelem 46891* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-closed intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iv) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
| Theorem | issmfge 46892* | The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all left-closed intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be b subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (iv) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = dom 𝐹 ⇒ ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ 𝑎 ≤ (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)))) | ||
| Theorem | smflimlem1 46893* | Lemma for the proof that the limit of a sequence of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that (𝐷 ∩ 𝐼) is in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) & ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) & ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) & ⊢ ((𝜑 ∧ 𝑟 ∈ ran 𝑃) → (𝐶‘𝑟) ∈ 𝑟) ⇒ ⊢ (𝜑 → (𝐷 ∩ 𝐼) ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smflimlem2 46894* | Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) & ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) & ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) & ⊢ ((𝜑 ∧ 𝑟 ∈ ran 𝑃) → (𝐶‘𝑟) ∈ 𝑟) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} ⊆ (𝐷 ∩ 𝐼)) | ||
| Theorem | smflimlem3 46895* | The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) & ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) & ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) & ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑃) → (𝐶‘𝑦) ∈ 𝑦) & ⊢ (𝜑 → 𝑋 ∈ (𝐷 ∩ 𝐼)) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) & ⊢ (𝜑 → (1 / 𝐾) < 𝑌) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌))) | ||
| Theorem | smflimlem4 46896* | Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) & ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) & ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) & ⊢ ((𝜑 ∧ 𝑟 ∈ ran 𝑃) → (𝐶‘𝑟) ∈ 𝑟) ⇒ ⊢ (𝜑 → (𝐷 ∩ 𝐼) ⊆ {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴}) | ||
| Theorem | smflimlem5 46897* | Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) & ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) & ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) & ⊢ ((𝜑 ∧ 𝑟 ∈ ran 𝑃) → (𝐶‘𝑟) ∈ 𝑟) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smflimlem6 46898* | Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
| Theorem | smflim 46899* | The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
| Theorem | nsssmfmbflem 46900* | The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑆 = dom vol & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 0) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |