|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > icht | Structured version Visualization version GIF version | ||
| Description: A theorem is interchangeable. (Contributed by SN, 4-May-2024.) | 
| Ref | Expression | 
|---|---|
| icht.1 | ⊢ 𝜑 | 
| Ref | Expression | 
|---|---|
| icht | ⊢ [𝑥⇄𝑦]𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | icht.1 | . . . . . . 7 ⊢ 𝜑 | |
| 2 | 1 | sbt 2066 | . . . . . 6 ⊢ [𝑎 / 𝑦]𝜑 | 
| 3 | 2 | sbt 2066 | . . . . 5 ⊢ [𝑦 / 𝑥][𝑎 / 𝑦]𝜑 | 
| 4 | 3 | sbt 2066 | . . . 4 ⊢ [𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 | 
| 5 | 4, 1 | 2th 264 | . . 3 ⊢ ([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑) | 
| 6 | 5 | gen2 1796 | . 2 ⊢ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑) | 
| 7 | df-ich 47433 | . 2 ⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑)) | |
| 8 | 6, 7 | mpbir 231 | 1 ⊢ [𝑥⇄𝑦]𝜑 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∀wal 1538 [wsb 2064 [wich 47432 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 | 
| This theorem depends on definitions: df-bi 207 df-sb 2065 df-ich 47433 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |