Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icht Structured version   Visualization version   GIF version

Theorem icht 45148
Description: A theorem is interchangeable. (Contributed by SN, 4-May-2024.)
Hypothesis
Ref Expression
icht.1 𝜑
Assertion
Ref Expression
icht [𝑥𝑦]𝜑

Proof of Theorem icht
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 icht.1 . . . . . . 7 𝜑
21sbt 2067 . . . . . 6 [𝑎 / 𝑦]𝜑
32sbt 2067 . . . . 5 [𝑦 / 𝑥][𝑎 / 𝑦]𝜑
43sbt 2067 . . . 4 [𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑
54, 12th 264 . . 3 ([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑)
65gen2 1796 . 2 𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑)
7 df-ich 45142 . 2 ([𝑥𝑦]𝜑 ↔ ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑))
86, 7mpbir 230 1 [𝑥𝑦]𝜑
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537  [wsb 2065  [wich 45141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795
This theorem depends on definitions:  df-bi 206  df-sb 2066  df-ich 45142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator