|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ichid | Structured version Visualization version GIF version | ||
| Description: A setvar variable is always interchangeable with itself. (Contributed by AV, 29-Jul-2023.) | 
| Ref | Expression | 
|---|---|
| ichid | ⊢ [𝑥⇄𝑥]𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbid 2255 | . . . . 5 ⊢ ([𝑥 / 𝑥][𝑎 / 𝑥]𝜑 ↔ [𝑎 / 𝑥]𝜑) | |
| 2 | 1 | sbbii 2076 | . . . 4 ⊢ ([𝑥 / 𝑎][𝑥 / 𝑥][𝑎 / 𝑥]𝜑 ↔ [𝑥 / 𝑎][𝑎 / 𝑥]𝜑) | 
| 3 | sbid2vw 2259 | . . . 4 ⊢ ([𝑥 / 𝑎][𝑎 / 𝑥]𝜑 ↔ 𝜑) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ ([𝑥 / 𝑎][𝑥 / 𝑥][𝑎 / 𝑥]𝜑 ↔ 𝜑) | 
| 5 | 4 | gen2 1796 | . 2 ⊢ ∀𝑥∀𝑥([𝑥 / 𝑎][𝑥 / 𝑥][𝑎 / 𝑥]𝜑 ↔ 𝜑) | 
| 6 | df-ich 47433 | . 2 ⊢ ([𝑥⇄𝑥]𝜑 ↔ ∀𝑥∀𝑥([𝑥 / 𝑎][𝑥 / 𝑥][𝑎 / 𝑥]𝜑 ↔ 𝜑)) | |
| 7 | 5, 6 | mpbir 231 | 1 ⊢ [𝑥⇄𝑥]𝜑 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∀wal 1538 [wsb 2064 [wich 47432 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-ich 47433 | 
| This theorem is referenced by: icheqid 47448 | 
| Copyright terms: Public domain | W3C validator |