Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ichid | Structured version Visualization version GIF version |
Description: A setvar variable is always interchangeable with itself. (Contributed by AV, 29-Jul-2023.) |
Ref | Expression |
---|---|
ichid | ⊢ [𝑥⇄𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid 2248 | . . . . 5 ⊢ ([𝑥 / 𝑥][𝑎 / 𝑥]𝜑 ↔ [𝑎 / 𝑥]𝜑) | |
2 | 1 | sbbii 2079 | . . . 4 ⊢ ([𝑥 / 𝑎][𝑥 / 𝑥][𝑎 / 𝑥]𝜑 ↔ [𝑥 / 𝑎][𝑎 / 𝑥]𝜑) |
3 | sbid2vw 2251 | . . . 4 ⊢ ([𝑥 / 𝑎][𝑎 / 𝑥]𝜑 ↔ 𝜑) | |
4 | 2, 3 | bitri 274 | . . 3 ⊢ ([𝑥 / 𝑎][𝑥 / 𝑥][𝑎 / 𝑥]𝜑 ↔ 𝜑) |
5 | 4 | gen2 1799 | . 2 ⊢ ∀𝑥∀𝑥([𝑥 / 𝑎][𝑥 / 𝑥][𝑎 / 𝑥]𝜑 ↔ 𝜑) |
6 | df-ich 44898 | . 2 ⊢ ([𝑥⇄𝑥]𝜑 ↔ ∀𝑥∀𝑥([𝑥 / 𝑎][𝑥 / 𝑥][𝑎 / 𝑥]𝜑 ↔ 𝜑)) | |
7 | 5, 6 | mpbir 230 | 1 ⊢ [𝑥⇄𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 [wsb 2067 [wich 44897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-ich 44898 |
This theorem is referenced by: icheqid 44913 |
Copyright terms: Public domain | W3C validator |