MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anor Structured version   Visualization version   GIF version

Theorem anor 979
Description: Conjunction in terms of disjunction (De Morgan's law). Theorem *4.5 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 3-Nov-2012.)
Assertion
Ref Expression
anor ((𝜑𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓))

Proof of Theorem anor
StepHypRef Expression
1 notnotb 314 . 2 ((𝜑𝜓) ↔ ¬ ¬ (𝜑𝜓))
2 ianor 978 . 2 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))
31, 2xchbinx 333 1 ((𝜑𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by:  pm3.1  988  pm3.11  989  dn1  1054  noran  1528  bropopvvv  7901  swrdnd0  14298  ifpananb  41011  iunrelexp0  41199
  Copyright terms: Public domain W3C validator