Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpbi23 Structured version   Visualization version   GIF version

Theorem ifpbi23 40978
Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.)
Assertion
Ref Expression
ifpbi23 (((𝜑𝜓) ∧ (𝜒𝜃)) → (if-(𝜏, 𝜑, 𝜒) ↔ if-(𝜏, 𝜓, 𝜃)))

Proof of Theorem ifpbi23
StepHypRef Expression
1 simpl 482 . . . 4 (((𝜑𝜓) ∧ (𝜒𝜃)) → (𝜑𝜓))
21imbi2d 340 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜏𝜑) ↔ (𝜏𝜓)))
3 simpr 484 . . . 4 (((𝜑𝜓) ∧ (𝜒𝜃)) → (𝜒𝜃))
43imbi2d 340 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((¬ 𝜏𝜒) ↔ (¬ 𝜏𝜃)))
52, 4anbi12d 630 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) → (((𝜏𝜑) ∧ (¬ 𝜏𝜒)) ↔ ((𝜏𝜓) ∧ (¬ 𝜏𝜃))))
6 dfifp2 1061 . 2 (if-(𝜏, 𝜑, 𝜒) ↔ ((𝜏𝜑) ∧ (¬ 𝜏𝜒)))
7 dfifp2 1061 . 2 (if-(𝜏, 𝜓, 𝜃) ↔ ((𝜏𝜓) ∧ (¬ 𝜏𝜃)))
85, 6, 73bitr4g 313 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → (if-(𝜏, 𝜑, 𝜒) ↔ if-(𝜏, 𝜓, 𝜃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  if-wif 1059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060
This theorem is referenced by:  ifpnot23d  40990  ifpdfxor  40992  ifpananb  41011  ifpnannanb  41012  ifpxorxorb  41016
  Copyright terms: Public domain W3C validator