Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpbi2 | Structured version Visualization version GIF version |
Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020.) |
Ref | Expression |
---|---|
ifpbi2 | ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜒, 𝜑, 𝜃) ↔ if-(𝜒, 𝜓, 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi2 349 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) | |
2 | 1 | anbi1d 630 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (((𝜒 → 𝜑) ∧ (¬ 𝜒 → 𝜃)) ↔ ((𝜒 → 𝜓) ∧ (¬ 𝜒 → 𝜃)))) |
3 | dfifp2 1062 | . 2 ⊢ (if-(𝜒, 𝜑, 𝜃) ↔ ((𝜒 → 𝜑) ∧ (¬ 𝜒 → 𝜃))) | |
4 | dfifp2 1062 | . 2 ⊢ (if-(𝜒, 𝜓, 𝜃) ↔ ((𝜒 → 𝜓) ∧ (¬ 𝜒 → 𝜃))) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜒, 𝜑, 𝜃) ↔ if-(𝜒, 𝜓, 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 if-wif 1060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 |
This theorem is referenced by: ifpnot23b 41089 |
Copyright terms: Public domain | W3C validator |