| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpbi2 | Structured version Visualization version GIF version | ||
| Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpbi2 | ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜒, 𝜑, 𝜃) ↔ if-(𝜒, 𝜓, 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi2 348 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (((𝜒 → 𝜑) ∧ (¬ 𝜒 → 𝜃)) ↔ ((𝜒 → 𝜓) ∧ (¬ 𝜒 → 𝜃)))) |
| 3 | dfifp2 1065 | . 2 ⊢ (if-(𝜒, 𝜑, 𝜃) ↔ ((𝜒 → 𝜑) ∧ (¬ 𝜒 → 𝜃))) | |
| 4 | dfifp2 1065 | . 2 ⊢ (if-(𝜒, 𝜓, 𝜃) ↔ ((𝜒 → 𝜓) ∧ (¬ 𝜒 → 𝜃))) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜒, 𝜑, 𝜃) ↔ if-(𝜒, 𝜓, 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 if-wif 1063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 |
| This theorem is referenced by: ifpnot23b 43495 |
| Copyright terms: Public domain | W3C validator |