|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpdfan | Structured version Visualization version GIF version | ||
| Description: Define and with conditional logic operator and false. (Contributed by RP, 20-Apr-2020.) | 
| Ref | Expression | 
|---|---|
| ifpdfan | ⊢ ((𝜑 ∧ 𝜓) ↔ if-(𝜑, 𝜓, ⊥)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fal 1554 | . . . 4 ⊢ ¬ ⊥ | |
| 2 | 1 | intnan 486 | . . 3 ⊢ ¬ (¬ 𝜑 ∧ ⊥) | 
| 3 | 2 | biorfri 940 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ⊥))) | 
| 4 | df-ifp 1064 | . 2 ⊢ (if-(𝜑, 𝜓, ⊥) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ⊥))) | |
| 5 | 3, 4 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ if-(𝜑, 𝜓, ⊥)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 848 if-wif 1063 ⊥wfal 1552 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-tru 1543 df-fal 1553 | 
| This theorem is referenced by: ifpdfnan 43499 ifpdfxor 43500 | 
| Copyright terms: Public domain | W3C validator |