![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfifp2 | Structured version Visualization version GIF version |
Description: Alternate definition of the conditional operator for propositions. The value of if-(𝜑, 𝜓, 𝜒) is "if 𝜑 then 𝜓, and if not 𝜑 then 𝜒". This is the definition used in Section II.24 of [Church] p. 129 (Definition D12 page 132) (see comment of df-ifp 1060). (Contributed by BJ, 22-Jun-2019.) |
Ref | Expression |
---|---|
dfifp2 | ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ifp 1060 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) | |
2 | cases2 1044 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 843 if-wif 1059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ifp 1060 |
This theorem is referenced by: dfifp3 1062 dfifp5 1064 ifpdfbi 1067 ifpnOLD 1071 ifpimpda 1079 revwlk 34413 ifpbi2 42520 ifpbi3 42521 ifpbi1 42530 ifpbi12 42541 ifpbi13 42542 ifpimimb 42557 ifpororb 42558 ifpbibib 42563 frege54cor0a 42916 |
Copyright terms: Public domain | W3C validator |