Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfifp2 | Structured version Visualization version GIF version |
Description: Alternate definition of the conditional operator for propositions. The value of if-(𝜑, 𝜓, 𝜒) is "if 𝜑 then 𝜓, and if not 𝜑 then 𝜒". This is the definition used in Section II.24 of [Church] p. 129 (Definition D12 page 132) (see comment of df-ifp 1061). (Contributed by BJ, 22-Jun-2019.) |
Ref | Expression |
---|---|
dfifp2 | ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ifp 1061 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) | |
2 | cases2 1045 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 if-wif 1060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 |
This theorem is referenced by: dfifp3 1063 dfifp5 1065 ifpdfbi 1068 ifpnOLD 1072 ifpimpda 1080 revwlk 33086 ifpbi2 41074 ifpbi3 41075 ifpbi23 41080 ifpbi1 41084 ifpbi12 41095 ifpbi13 41096 ifpimimb 41111 ifpororb 41112 ifpbibib 41117 frege54cor0a 41471 |
Copyright terms: Public domain | W3C validator |