Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpbicor | Structured version Visualization version GIF version |
Description: Corollary of commutation of biconditional. (Contributed by RP, 25-Apr-2020.) |
Ref | Expression |
---|---|
ifpbicor | ⊢ (if-(𝜑, 𝜓, ¬ 𝜓) ↔ if-(𝜓, 𝜑, ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 225 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) | |
2 | ifpdfbi 1071 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜓)) | |
3 | ifpdfbi 1071 | . 2 ⊢ ((𝜓 ↔ 𝜑) ↔ if-(𝜓, 𝜑, ¬ 𝜑)) | |
4 | 1, 2, 3 | 3bitr3i 304 | 1 ⊢ (if-(𝜑, 𝜓, ¬ 𝜓) ↔ if-(𝜓, 𝜑, ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 if-wif 1063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 |
This theorem is referenced by: ifpxorcor 40768 |
Copyright terms: Public domain | W3C validator |