| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpbicor | Structured version Visualization version GIF version | ||
| Description: Corollary of commutation of biconditional. (Contributed by RP, 25-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpbicor | ⊢ (if-(𝜑, 𝜓, ¬ 𝜓) ↔ if-(𝜓, 𝜑, ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 222 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) | |
| 2 | ifpdfbi 1070 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜓)) | |
| 3 | ifpdfbi 1070 | . 2 ⊢ ((𝜓 ↔ 𝜑) ↔ if-(𝜓, 𝜑, ¬ 𝜑)) | |
| 4 | 1, 2, 3 | 3bitr3i 301 | 1 ⊢ (if-(𝜑, 𝜓, ¬ 𝜓) ↔ if-(𝜓, 𝜑, ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 if-wif 1062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 |
| This theorem is referenced by: ifpxorcor 43434 |
| Copyright terms: Public domain | W3C validator |