| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifpdfbi | Structured version Visualization version GIF version | ||
| Description: Define the biconditional as conditional logic operator. (Contributed by RP, 20-Apr-2020.) (Proof shortened by Wolf Lammen, 30-Apr-2024.) |
| Ref | Expression |
|---|---|
| ifpdfbi | ⊢ ((𝜑 ↔ 𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con34b 316 | . . 3 ⊢ ((𝜓 → 𝜑) ↔ (¬ 𝜑 → ¬ 𝜓)) | |
| 2 | 1 | anbi2i 623 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → ¬ 𝜓))) |
| 3 | dfbi2 474 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
| 4 | dfifp2 1065 | . 2 ⊢ (if-(𝜑, 𝜓, ¬ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → ¬ 𝜓))) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 if-wif 1063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 |
| This theorem is referenced by: wl-df3xor2 37470 wl-2xor 37484 ifpbiidcor 43487 ifpbicor 43488 |
| Copyright terms: Public domain | W3C validator |