Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifpdfbi | Structured version Visualization version GIF version |
Description: Define the biconditional as conditional logic operator. (Contributed by RP, 20-Apr-2020.) (Proof shortened by Wolf Lammen, 30-Apr-2024.) |
Ref | Expression |
---|---|
ifpdfbi | ⊢ ((𝜑 ↔ 𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con34b 315 | . . 3 ⊢ ((𝜓 → 𝜑) ↔ (¬ 𝜑 → ¬ 𝜓)) | |
2 | 1 | anbi2i 623 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → ¬ 𝜓))) |
3 | dfbi2 475 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
4 | dfifp2 1062 | . 2 ⊢ (if-(𝜑, 𝜓, ¬ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → ¬ 𝜓))) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 if-wif 1060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 |
This theorem is referenced by: wl-df3xor2 35753 wl-2xor 35767 ifpbiidcor 41411 ifpbicor 41412 |
Copyright terms: Public domain | W3C validator |