MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpdfbi Structured version   Visualization version   GIF version

Theorem ifpdfbi 1068
Description: Define the biconditional as conditional logic operator. (Contributed by RP, 20-Apr-2020.) (Proof shortened by Wolf Lammen, 30-Apr-2024.)
Assertion
Ref Expression
ifpdfbi ((𝜑𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜓))

Proof of Theorem ifpdfbi
StepHypRef Expression
1 con34b 315 . . 3 ((𝜓𝜑) ↔ (¬ 𝜑 → ¬ 𝜓))
21anbi2i 623 . 2 (((𝜑𝜓) ∧ (𝜓𝜑)) ↔ ((𝜑𝜓) ∧ (¬ 𝜑 → ¬ 𝜓)))
3 dfbi2 475 . 2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
4 dfifp2 1062 . 2 (if-(𝜑, 𝜓, ¬ 𝜓) ↔ ((𝜑𝜓) ∧ (¬ 𝜑 → ¬ 𝜓)))
52, 3, 43bitr4i 302 1 ((𝜑𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  if-wif 1060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061
This theorem is referenced by:  wl-df3xor2  35753  wl-2xor  35767  ifpbiidcor  41411  ifpbicor  41412
  Copyright terms: Public domain W3C validator