Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.1 | Structured version Visualization version GIF version |
Description: Theorem *2.1 of [WhiteheadRussell] p. 101. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) |
Ref | Expression |
---|---|
pm2.1 | ⊢ (¬ 𝜑 ∨ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | imori 850 | 1 ⊢ (¬ 𝜑 ∨ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: lelttric 11012 hashbclem 14092 maducoeval2 21697 hiidge0 29361 xrlelttric 30977 nofv 33787 wl-orel12 35597 ifpdfor2 40966 en3lpVD 42354 fvmptrabdm 44672 |
Copyright terms: Public domain | W3C validator |