MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.1 Structured version   Visualization version   GIF version

Theorem pm2.1 897
Description: Theorem *2.1 of [WhiteheadRussell] p. 101. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
Assertion
Ref Expression
pm2.1 𝜑𝜑)

Proof of Theorem pm2.1
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21imori 855 1 𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 849
This theorem is referenced by:  lelttric  11368  hashbclem  14491  maducoeval2  22646  nofv  27702  eln0s  28358  hiidge0  31117  xrlelttric  32756  wl-orel12  37512  ifpdfor2  43474  en3lpVD  44865  fvmptrabdm  47305
  Copyright terms: Public domain W3C validator