| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.1 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.1 of [WhiteheadRussell] p. 101. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm2.1 | ⊢ (¬ 𝜑 ∨ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | imori 854 | 1 ⊢ (¬ 𝜑 ∨ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: lelttric 11241 hashbclem 14377 maducoeval2 22543 nofv 27585 eln0s 28274 hiidge0 31060 xrlelttric 32708 wl-orel12 37484 ifpdfor2 43434 en3lpVD 44818 fvmptrabdm 47278 |
| Copyright terms: Public domain | W3C validator |