MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.1 Structured version   Visualization version   GIF version

Theorem pm2.1 896
Description: Theorem *2.1 of [WhiteheadRussell] p. 101. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
Assertion
Ref Expression
pm2.1 𝜑𝜑)

Proof of Theorem pm2.1
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21imori 853 1 𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 847
This theorem is referenced by:  lelttric  11267  hashbclem  14355  maducoeval2  22005  nofv  27021  hiidge0  30082  xrlelttric  31704  wl-orel12  36016  ifpdfor2  41821  en3lpVD  43215  fvmptrabdm  45611
  Copyright terms: Public domain W3C validator