Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpid3g | Structured version Visualization version GIF version |
Description: Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
Ref | Expression |
---|---|
ifpid3g | ⊢ ((𝜒 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ (((𝜑 ∧ 𝜓) → 𝜒) ∧ ((𝜑 ∧ 𝜒) → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 865 | . . 3 ⊢ (𝜒 → (𝜑 ∨ 𝜒)) | |
2 | 1, 1 | pm3.2i 471 | . 2 ⊢ ((𝜒 → (𝜑 ∨ 𝜒)) ∧ (𝜒 → (𝜑 ∨ 𝜒))) |
3 | ifpidg 41098 | . 2 ⊢ ((𝜒 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ ((((𝜑 ∧ 𝜓) → 𝜒) ∧ ((𝜑 ∧ 𝜒) → 𝜓)) ∧ ((𝜒 → (𝜑 ∨ 𝜒)) ∧ (𝜒 → (𝜑 ∨ 𝜒))))) | |
4 | 2, 3 | mpbiran2 707 | 1 ⊢ ((𝜒 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ (((𝜑 ∧ 𝜓) → 𝜒) ∧ ((𝜑 ∧ 𝜒) → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 if-wif 1060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |