|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ifpor | Structured version Visualization version GIF version | ||
| Description: The conditional operator implies the disjunction of its possible outputs. Dual statement of anifp 1071. (Contributed by BJ, 1-Oct-2019.) | 
| Ref | Expression | 
|---|---|
| ifpor | ⊢ (if-(𝜑, 𝜓, 𝜒) → (𝜓 ∨ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ifp 1063 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 3 | simpr 484 | . . 3 ⊢ ((¬ 𝜑 ∧ 𝜒) → 𝜒) | |
| 4 | 2, 3 | orim12i 908 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) → (𝜓 ∨ 𝜒)) | 
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (if-(𝜑, 𝜓, 𝜒) → (𝜓 ∨ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 if-wif 1062 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |