Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifpor | Structured version Visualization version GIF version |
Description: The conditional operator implies the disjunction of its possible outputs. Dual statement of anifp 1069. (Contributed by BJ, 1-Oct-2019.) |
Ref | Expression |
---|---|
ifpor | ⊢ (if-(𝜑, 𝜓, 𝜒) → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ifp 1061 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) | |
2 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
3 | simpr 485 | . . 3 ⊢ ((¬ 𝜑 ∧ 𝜒) → 𝜒) | |
4 | 2, 3 | orim12i 906 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) → (𝜓 ∨ 𝜒)) |
5 | 1, 4 | sylbi 216 | 1 ⊢ (if-(𝜑, 𝜓, 𝜒) → (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 if-wif 1060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |