MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpor Structured version   Visualization version   GIF version

Theorem ifpor 1069
Description: The conditional operator implies the disjunction of its possible outputs. Dual statement of anifp 1068. (Contributed by BJ, 1-Oct-2019.)
Assertion
Ref Expression
ifpor (if-(𝜑, 𝜓, 𝜒) → (𝜓𝜒))

Proof of Theorem ifpor
StepHypRef Expression
1 df-ifp 1060 . 2 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
2 simpr 484 . . 3 ((𝜑𝜓) → 𝜓)
3 simpr 484 . . 3 ((¬ 𝜑𝜒) → 𝜒)
42, 3orim12i 905 . 2 (((𝜑𝜓) ∨ (¬ 𝜑𝜒)) → (𝜓𝜒))
51, 4sylbi 216 1 (if-(𝜑, 𝜓, 𝜒) → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  if-wif 1059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator