![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orim12i | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
Ref | Expression |
---|---|
orim12i.1 | ⊢ (𝜑 → 𝜓) |
orim12i.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | orcd 871 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 3 | olcd 872 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
5 | 2, 4 | jaoi 855 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 846 |
This theorem is referenced by: orim1i 907 orim2i 908 prlem2 1053 ifpor 1070 eueq3 3703 pwssun 5573 xpima 6188 fvresval 7365 0mpo0 7503 funcnvuni 7940 2oconcl 8524 djur 9944 djuun 9951 fin23lem23 10351 fin23lem19 10361 fin1a2lem13 10437 fin1a2s 10439 nn0ge0 12530 elfzlmr 13782 hash2pwpr 14473 trclfvg 14998 xpcbas 18172 odcl 19503 gexcl 19547 ang180lem4 26789 sltn0 27877 elim2ifim 32415 locfinref 33573 volmeas 33981 nepss 35443 funpsstri 35492 bj-prmoore 36725 bj-imdirco 36800 dvasin 37308 dvacos 37309 disjorimxrn 38350 relexpxpmin 43289 clsk1indlem3 43615 elsprel 46952 resolution 48418 |
Copyright terms: Public domain | W3C validator |