| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim12i | Structured version Visualization version GIF version | ||
| Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
| Ref | Expression |
|---|---|
| orim12i.1 | ⊢ (𝜑 → 𝜓) |
| orim12i.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | orcd 873 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
| 3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
| 5 | 2, 4 | jaoi 857 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orim1i 909 orim2i 910 prlem2 1055 ifpor 1072 eueq3 3685 pwssun 5533 xpima 6158 fvresval 7336 0mpo0 7475 funcnvuni 7911 2oconcl 8470 djur 9879 djuun 9886 fin23lem23 10286 fin23lem19 10296 fin1a2lem13 10372 fin1a2s 10374 nn0ge0 12474 elfzlmr 13749 hash2pwpr 14448 trclfvg 14988 xpcbas 18146 odcl 19473 gexcl 19517 ang180lem4 26729 sltn0 27824 n0seo 28314 elim2ifim 32481 locfinref 33838 volmeas 34228 nepss 35712 funpsstri 35760 bj-prmoore 37110 bj-imdirco 37185 dvasin 37705 dvacos 37706 disjorimxrn 38747 relexpxpmin 43713 clsk1indlem3 44039 elsprel 47480 resolution 49792 |
| Copyright terms: Public domain | W3C validator |