| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim12i | Structured version Visualization version GIF version | ||
| Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
| Ref | Expression |
|---|---|
| orim12i.1 | ⊢ (𝜑 → 𝜓) |
| orim12i.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | orcd 873 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
| 3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
| 5 | 2, 4 | jaoi 857 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orim1i 909 orim2i 910 prlem2 1055 ifpor 1072 eueq3 3670 pwssun 5508 xpima 6129 fvresval 7292 0mpo0 7429 funcnvuni 7862 2oconcl 8418 djur 9812 djuun 9819 fin23lem23 10217 fin23lem19 10227 fin1a2lem13 10303 fin1a2s 10305 nn0ge0 12406 elfzlmr 13682 hash2pwpr 14383 trclfvg 14922 xpcbas 18084 odcl 19449 gexcl 19493 ang180lem4 26750 sltn0 27852 n0seo 28345 elim2ifim 32523 locfinref 33852 volmeas 34242 nepss 35760 funpsstri 35808 bj-prmoore 37155 bj-imdirco 37230 dvasin 37750 dvacos 37751 disjorimxrn 38792 relexpxpmin 43756 clsk1indlem3 44082 elsprel 47512 resolution 49837 |
| Copyright terms: Public domain | W3C validator |