![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orim12i | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
Ref | Expression |
---|---|
orim12i.1 | ⊢ (𝜑 → 𝜓) |
orim12i.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | orcd 872 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 3 | olcd 873 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
5 | 2, 4 | jaoi 856 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: orim1i 909 orim2i 910 prlem2 1055 ifpor 1072 eueq3 3708 pwssun 5572 xpima 6182 fvresval 7355 0mpo0 7492 funcnvuni 7922 2oconcl 8503 djur 9914 djuun 9921 fin23lem23 10321 fin23lem19 10331 fin1a2lem13 10407 fin1a2s 10409 nn0ge0 12497 elfzlmr 13746 hash2pwpr 14437 trclfvg 14962 xpcbas 18130 odcl 19404 gexcl 19448 ang180lem4 26317 sltn0 27399 elim2ifim 31777 locfinref 32821 volmeas 33229 nepss 34687 funpsstri 34737 bj-prmoore 35996 bj-imdirco 36071 dvasin 36572 dvacos 36573 disjorimxrn 37618 relexpxpmin 42468 clsk1indlem3 42794 elsprel 46143 resolution 47846 |
Copyright terms: Public domain | W3C validator |