Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orim12i | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
Ref | Expression |
---|---|
orim12i.1 | ⊢ (𝜑 → 𝜓) |
orim12i.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | orcd 869 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 3 | olcd 870 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
5 | 2, 4 | jaoi 853 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: orim1i 906 orim2i 907 prlem2 1052 ifpor 1069 eueq3 3641 pwssun 5476 xpima 6074 0mpo0 7336 funcnvuni 7752 2oconcl 8295 djur 9608 djuun 9615 fin23lem23 10013 fin23lem19 10023 fin1a2lem13 10099 fin1a2s 10101 nn0ge0 12188 elfzlmr 13429 hash2pwpr 14118 trclfvg 14654 xpcbas 17811 odcl 19059 gexcl 19100 ang180lem4 25867 elim2ifim 30789 locfinref 31693 volmeas 32099 nepss 33564 funpsstri 33645 fvresval 33647 sltn0 34012 bj-prmoore 35213 bj-imdirco 35288 dvasin 35788 dvacos 35789 disjorimxrn 36783 relexpxpmin 41214 clsk1indlem3 41542 elsprel 44815 resolution 46389 |
Copyright terms: Public domain | W3C validator |