| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim12i | Structured version Visualization version GIF version | ||
| Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
| Ref | Expression |
|---|---|
| orim12i.1 | ⊢ (𝜑 → 𝜓) |
| orim12i.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | orcd 873 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
| 3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
| 5 | 2, 4 | jaoi 857 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orim1i 909 orim2i 910 prlem2 1055 ifpor 1072 eueq3 3673 pwssun 5515 xpima 6135 fvresval 7299 0mpo0 7436 funcnvuni 7872 2oconcl 8428 djur 9834 djuun 9841 fin23lem23 10239 fin23lem19 10249 fin1a2lem13 10325 fin1a2s 10327 nn0ge0 12427 elfzlmr 13702 hash2pwpr 14401 trclfvg 14940 xpcbas 18102 odcl 19433 gexcl 19477 ang180lem4 26738 sltn0 27838 n0seo 28331 elim2ifim 32507 locfinref 33810 volmeas 34200 nepss 35693 funpsstri 35741 bj-prmoore 37091 bj-imdirco 37166 dvasin 37686 dvacos 37687 disjorimxrn 38728 relexpxpmin 43693 clsk1indlem3 44019 elsprel 47463 resolution 49788 |
| Copyright terms: Public domain | W3C validator |