![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orim12i | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
Ref | Expression |
---|---|
orim12i.1 | ⊢ (𝜑 → 𝜓) |
orim12i.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | orcd 869 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 3 | olcd 870 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
5 | 2, 4 | jaoi 853 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: orim1i 906 orim2i 907 prlem2 1052 ifpor 1069 eueq3 3706 pwssun 5570 xpima 6180 fvresval 7357 0mpo0 7494 funcnvuni 7924 2oconcl 8505 djur 9916 djuun 9923 fin23lem23 10323 fin23lem19 10333 fin1a2lem13 10409 fin1a2s 10411 nn0ge0 12501 elfzlmr 13750 hash2pwpr 14441 trclfvg 14966 xpcbas 18134 odcl 19445 gexcl 19489 ang180lem4 26553 sltn0 27636 elim2ifim 32044 locfinref 33119 volmeas 33527 nepss 34991 funpsstri 35041 bj-prmoore 36299 bj-imdirco 36374 dvasin 36875 dvacos 36876 disjorimxrn 37921 relexpxpmin 42770 clsk1indlem3 43096 elsprel 46441 resolution 47933 |
Copyright terms: Public domain | W3C validator |