Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orim12i | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
Ref | Expression |
---|---|
orim12i.1 | ⊢ (𝜑 → 𝜓) |
orim12i.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | orcd 871 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 3 | olcd 872 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
5 | 2, 4 | jaoi 855 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 846 |
This theorem is referenced by: orim1i 908 orim2i 909 prlem2 1054 ifpor 1071 eueq3 3660 pwssun 5519 xpima 6124 fvresval 7289 0mpo0 7424 funcnvuni 7850 2oconcl 8408 djur 9780 djuun 9787 fin23lem23 10187 fin23lem19 10197 fin1a2lem13 10273 fin1a2s 10275 nn0ge0 12363 elfzlmr 13606 hash2pwpr 14294 trclfvg 14825 xpcbas 17992 odcl 19240 gexcl 19281 ang180lem4 26067 elim2ifim 31173 locfinref 32087 volmeas 32495 nepss 33957 funpsstri 34023 sltn0 34193 bj-prmoore 35440 bj-imdirco 35515 dvasin 36017 dvacos 36018 disjorimxrn 37066 relexpxpmin 41698 clsk1indlem3 42026 elsprel 45345 resolution 46921 |
Copyright terms: Public domain | W3C validator |