| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim12i | Structured version Visualization version GIF version | ||
| Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
| Ref | Expression |
|---|---|
| orim12i.1 | ⊢ (𝜑 → 𝜓) |
| orim12i.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | orcd 873 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
| 3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
| 5 | 2, 4 | jaoi 857 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orim1i 909 orim2i 910 prlem2 1055 ifpor 1072 eueq3 3682 pwssun 5530 xpima 6155 fvresval 7333 0mpo0 7472 funcnvuni 7908 2oconcl 8467 djur 9872 djuun 9879 fin23lem23 10279 fin23lem19 10289 fin1a2lem13 10365 fin1a2s 10367 nn0ge0 12467 elfzlmr 13742 hash2pwpr 14441 trclfvg 14981 xpcbas 18139 odcl 19466 gexcl 19510 ang180lem4 26722 sltn0 27817 n0seo 28307 elim2ifim 32474 locfinref 33831 volmeas 34221 nepss 35705 funpsstri 35753 bj-prmoore 37103 bj-imdirco 37178 dvasin 37698 dvacos 37699 disjorimxrn 38740 relexpxpmin 43706 clsk1indlem3 44032 elsprel 47476 resolution 49788 |
| Copyright terms: Public domain | W3C validator |