Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orim12i | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
Ref | Expression |
---|---|
orim12i.1 | ⊢ (𝜑 → 𝜓) |
orim12i.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | orcd 873 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 3 | olcd 874 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
5 | 2, 4 | jaoi 857 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-or 848 |
This theorem is referenced by: orim1i 910 orim2i 911 prlem2 1056 ifpor 1073 eueq3 3624 pwssun 5451 xpima 6045 0mpo0 7294 funcnvuni 7709 2oconcl 8230 djur 9535 djuun 9542 fin23lem23 9940 fin23lem19 9950 fin1a2lem13 10026 fin1a2s 10028 nn0ge0 12115 elfzlmr 13356 hash2pwpr 14042 trclfvg 14578 xpcbas 17685 odcl 18928 gexcl 18969 ang180lem4 25695 elim2ifim 30607 locfinref 31505 volmeas 31911 nepss 33377 funpsstri 33458 fvresval 33460 sltn0 33822 bj-prmoore 35021 bj-imdirco 35096 dvasin 35598 dvacos 35599 disjorimxrn 36593 relexpxpmin 41002 clsk1indlem3 41330 elsprel 44600 resolution 46174 |
Copyright terms: Public domain | W3C validator |