| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim12i | Structured version Visualization version GIF version | ||
| Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
| Ref | Expression |
|---|---|
| orim12i.1 | ⊢ (𝜑 → 𝜓) |
| orim12i.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | orcd 873 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
| 3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
| 5 | 2, 4 | jaoi 857 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orim1i 909 orim2i 910 prlem2 1055 ifpor 1072 eueq3 3694 pwssun 5545 xpima 6171 fvresval 7351 0mpo0 7490 funcnvuni 7928 2oconcl 8515 djur 9933 djuun 9940 fin23lem23 10340 fin23lem19 10350 fin1a2lem13 10426 fin1a2s 10428 nn0ge0 12526 elfzlmr 13797 hash2pwpr 14494 trclfvg 15034 xpcbas 18190 odcl 19517 gexcl 19561 ang180lem4 26774 sltn0 27869 n0seo 28359 elim2ifim 32526 locfinref 33872 volmeas 34262 nepss 35735 funpsstri 35783 bj-prmoore 37133 bj-imdirco 37208 dvasin 37728 dvacos 37729 disjorimxrn 38766 relexpxpmin 43741 clsk1indlem3 44067 elsprel 47489 resolution 49663 |
| Copyright terms: Public domain | W3C validator |