![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orim12i | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
Ref | Expression |
---|---|
orim12i.1 | ⊢ (𝜑 → 𝜓) |
orim12i.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | orcd 873 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 3 | olcd 874 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
5 | 2, 4 | jaoi 857 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 |
This theorem is referenced by: orim1i 909 orim2i 910 prlem2 1055 ifpor 1072 eueq3 3719 pwssun 5579 xpima 6203 fvresval 7377 0mpo0 7515 funcnvuni 7954 2oconcl 8539 djur 9956 djuun 9963 fin23lem23 10363 fin23lem19 10373 fin1a2lem13 10449 fin1a2s 10451 nn0ge0 12548 elfzlmr 13816 hash2pwpr 14511 trclfvg 15050 xpcbas 18233 odcl 19568 gexcl 19612 ang180lem4 26869 sltn0 27957 n0seo 28419 elim2ifim 32565 locfinref 33801 volmeas 34211 nepss 35697 funpsstri 35746 bj-prmoore 37097 bj-imdirco 37172 dvasin 37690 dvacos 37691 disjorimxrn 38729 relexpxpmin 43706 clsk1indlem3 44032 elsprel 47399 resolution 49029 |
Copyright terms: Public domain | W3C validator |