MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim12i Structured version   Visualization version   GIF version

Theorem orim12i 908
Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.)
Hypotheses
Ref Expression
orim12i.1 (𝜑𝜓)
orim12i.2 (𝜒𝜃)
Assertion
Ref Expression
orim12i ((𝜑𝜒) → (𝜓𝜃))

Proof of Theorem orim12i
StepHypRef Expression
1 orim12i.1 . . 3 (𝜑𝜓)
21orcd 873 . 2 (𝜑 → (𝜓𝜃))
3 orim12i.2 . . 3 (𝜒𝜃)
43olcd 874 . 2 (𝜒 → (𝜓𝜃))
52, 4jaoi 857 1 ((𝜑𝜒) → (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  orim1i  909  orim2i  910  prlem2  1055  ifpor  1072  eueq3  3694  pwssun  5545  xpima  6171  fvresval  7351  0mpo0  7490  funcnvuni  7928  2oconcl  8515  djur  9933  djuun  9940  fin23lem23  10340  fin23lem19  10350  fin1a2lem13  10426  fin1a2s  10428  nn0ge0  12526  elfzlmr  13797  hash2pwpr  14494  trclfvg  15034  xpcbas  18190  odcl  19517  gexcl  19561  ang180lem4  26774  sltn0  27869  n0seo  28359  elim2ifim  32526  locfinref  33872  volmeas  34262  nepss  35735  funpsstri  35783  bj-prmoore  37133  bj-imdirco  37208  dvasin  37728  dvacos  37729  disjorimxrn  38766  relexpxpmin  43741  clsk1indlem3  44067  elsprel  47489  resolution  49663
  Copyright terms: Public domain W3C validator