Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orim12i | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
Ref | Expression |
---|---|
orim12i.1 | ⊢ (𝜑 → 𝜓) |
orim12i.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | orcd 870 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 3 | olcd 871 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
5 | 2, 4 | jaoi 854 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: orim1i 907 orim2i 908 prlem2 1053 ifpor 1070 eueq3 3646 pwssun 5485 xpima 6085 0mpo0 7358 funcnvuni 7778 2oconcl 8333 djur 9677 djuun 9684 fin23lem23 10082 fin23lem19 10092 fin1a2lem13 10168 fin1a2s 10170 nn0ge0 12258 elfzlmr 13501 hash2pwpr 14190 trclfvg 14726 xpcbas 17895 odcl 19144 gexcl 19185 ang180lem4 25962 elim2ifim 30888 locfinref 31791 volmeas 32199 nepss 33662 funpsstri 33739 fvresval 33741 sltn0 34085 bj-prmoore 35286 bj-imdirco 35361 dvasin 35861 dvacos 35862 disjorimxrn 36856 relexpxpmin 41325 clsk1indlem3 41653 elsprel 44927 resolution 46503 |
Copyright terms: Public domain | W3C validator |