![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orim12i | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
Ref | Expression |
---|---|
orim12i.1 | ⊢ (𝜑 → 𝜓) |
orim12i.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | orcd 872 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 3 | olcd 873 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
5 | 2, 4 | jaoi 856 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: orim1i 908 orim2i 909 prlem2 1056 ifpor 1073 eueq3 3733 pwssun 5590 xpima 6213 fvresval 7394 0mpo0 7533 funcnvuni 7972 2oconcl 8559 djur 9988 djuun 9995 fin23lem23 10395 fin23lem19 10405 fin1a2lem13 10481 fin1a2s 10483 nn0ge0 12578 elfzlmr 13831 hash2pwpr 14525 trclfvg 15064 xpcbas 18247 odcl 19578 gexcl 19622 ang180lem4 26873 sltn0 27961 n0seo 28423 elim2ifim 32568 locfinref 33787 volmeas 34195 nepss 35680 funpsstri 35729 bj-prmoore 37081 bj-imdirco 37156 dvasin 37664 dvacos 37665 disjorimxrn 38704 relexpxpmin 43679 clsk1indlem3 44005 elsprel 47349 resolution 48893 |
Copyright terms: Public domain | W3C validator |