| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim12i | Structured version Visualization version GIF version | ||
| Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
| Ref | Expression |
|---|---|
| orim12i.1 | ⊢ (𝜑 → 𝜓) |
| orim12i.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | orcd 873 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
| 3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
| 5 | 2, 4 | jaoi 857 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orim1i 909 orim2i 910 prlem2 1055 ifpor 1072 eueq3 3666 pwssun 5513 xpima 6136 fvresval 7300 0mpo0 7437 funcnvuni 7870 2oconcl 8426 djur 9821 djuun 9828 fin23lem23 10226 fin23lem19 10236 fin1a2lem13 10312 fin1a2s 10314 nn0ge0 12415 elfzlmr 13686 hash2pwpr 14387 trclfvg 14926 xpcbas 18088 odcl 19452 gexcl 19496 ang180lem4 26752 sltn0 27854 n0seo 28347 elim2ifim 32529 locfinref 33877 volmeas 34267 nepss 35785 funpsstri 35833 bj-prmoore 37182 bj-imdirco 37257 dvasin 37767 dvacos 37768 disjorimxrn 38869 relexpxpmin 43837 clsk1indlem3 44163 elsprel 47602 resolution 49927 |
| Copyright terms: Public domain | W3C validator |