Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpxorcor | Structured version Visualization version GIF version |
Description: Corollary of commutation of biconditional. (Contributed by RP, 25-Apr-2020.) |
Ref | Expression |
---|---|
ifpxorcor | ⊢ (if-(𝜑, ¬ 𝜓, 𝜓) ↔ if-(𝜓, ¬ 𝜑, 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifpbicor 40980 | . 2 ⊢ (if-(𝜑, ¬ 𝜓, ¬ ¬ 𝜓) ↔ if-(¬ 𝜓, 𝜑, ¬ 𝜑)) | |
2 | notnotb 314 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
3 | ifpbi3 40973 | . . 3 ⊢ ((𝜓 ↔ ¬ ¬ 𝜓) → (if-(𝜑, ¬ 𝜓, 𝜓) ↔ if-(𝜑, ¬ 𝜓, ¬ ¬ 𝜓))) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (if-(𝜑, ¬ 𝜓, 𝜓) ↔ if-(𝜑, ¬ 𝜓, ¬ ¬ 𝜓)) |
5 | ifpn 1070 | . 2 ⊢ (if-(𝜓, ¬ 𝜑, 𝜑) ↔ if-(¬ 𝜓, 𝜑, ¬ 𝜑)) | |
6 | 1, 4, 5 | 3bitr4i 302 | 1 ⊢ (if-(𝜑, ¬ 𝜓, 𝜓) ↔ if-(𝜓, ¬ 𝜑, 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 if-wif 1059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |