| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imnang | Structured version Visualization version GIF version | ||
| Description: Quantified implication in terms of quantified negation of conjunction. (Contributed by BJ, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| imnang | ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ∀𝑥 ¬ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 2 | 1 | albii 1819 | 1 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ∀𝑥 ¬ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: alinexa 1843 raln 3069 rexab 3700 n0el 4364 ballotlem2 34491 |
| Copyright terms: Public domain | W3C validator |