| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexab | Structured version Visualization version GIF version | ||
| Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.) Reduce axiom usage. (Revised by GG, 2-Nov-2024.) |
| Ref | Expression |
|---|---|
| ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexab | ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∃𝑥(𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 3059 | . . . 4 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ¬ ∀𝑥 ∈ {𝑦 ∣ 𝜑} ¬ 𝜒) | |
| 2 | ralab.1 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ralab 3652 | . . . 4 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑} ¬ 𝜒 ↔ ∀𝑥(𝜓 → ¬ 𝜒)) |
| 4 | 1, 3 | xchbinx 334 | . . 3 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ¬ ∀𝑥(𝜓 → ¬ 𝜒)) |
| 5 | imnang 1843 | . . 3 ⊢ (∀𝑥(𝜓 → ¬ 𝜒) ↔ ∀𝑥 ¬ (𝜓 ∧ 𝜒)) | |
| 6 | 4, 5 | xchbinx 334 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ¬ ∀𝑥 ¬ (𝜓 ∧ 𝜒)) |
| 7 | df-ex 1781 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜒) ↔ ¬ ∀𝑥 ¬ (𝜓 ∧ 𝜒)) | |
| 8 | 6, 7 | bitr4i 278 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∃𝑥(𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∃wex 1780 {cab 2709 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: 4sqlem12 16865 noinfno 27655 sleadd1 27930 addsuniflem 27942 addsasslem1 27944 addsasslem2 27945 mulsuniflem 28086 addsdilem1 28088 addsdilem2 28089 mulsasslem1 28100 mulsasslem2 28101 renegscl 28398 readdscl 28399 remulscl 28402 mblfinlem3 37698 mblfinlem4 37699 ismblfin 37700 itg2addnclem 37710 itg2addnc 37713 diophrex 42807 |
| Copyright terms: Public domain | W3C validator |