MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexab Structured version   Visualization version   GIF version

Theorem rexab 3716
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.) Reduce axiom usage. (Revised by GG, 2-Nov-2024.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
rexab (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∃𝑥(𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)

Proof of Theorem rexab
StepHypRef Expression
1 dfrex2 3079 . . . 4 (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ¬ ∀𝑥 ∈ {𝑦𝜑} ¬ 𝜒)
2 ralab.1 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
32ralab 3713 . . . 4 (∀𝑥 ∈ {𝑦𝜑} ¬ 𝜒 ↔ ∀𝑥(𝜓 → ¬ 𝜒))
41, 3xchbinx 334 . . 3 (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ¬ ∀𝑥(𝜓 → ¬ 𝜒))
5 imnang 1840 . . 3 (∀𝑥(𝜓 → ¬ 𝜒) ↔ ∀𝑥 ¬ (𝜓𝜒))
64, 5xchbinx 334 . 2 (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ¬ ∀𝑥 ¬ (𝜓𝜒))
7 df-ex 1778 . 2 (∃𝑥(𝜓𝜒) ↔ ¬ ∀𝑥 ¬ (𝜓𝜒))
86, 7bitr4i 278 1 (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∃𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535  wex 1777  {cab 2717  wral 3067  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-ral 3068  df-rex 3077
This theorem is referenced by:  4sqlem12  17003  noinfno  27781  sleadd1  28040  addsuniflem  28052  addsasslem1  28054  addsasslem2  28055  mulsuniflem  28193  addsdilem1  28195  addsdilem2  28196  mulsasslem1  28207  mulsasslem2  28208  renegscl  28448  readdscl  28449  remulscl  28452  mblfinlem3  37619  mblfinlem4  37620  ismblfin  37621  itg2addnclem  37631  itg2addnc  37634  diophrex  42731
  Copyright terms: Public domain W3C validator