MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexab Structured version   Visualization version   GIF version

Theorem rexab 3669
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.) Reduce axiom usage. (Revised by GG, 2-Nov-2024.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
rexab (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∃𝑥(𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)

Proof of Theorem rexab
StepHypRef Expression
1 dfrex2 3057 . . . 4 (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ¬ ∀𝑥 ∈ {𝑦𝜑} ¬ 𝜒)
2 ralab.1 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
32ralab 3667 . . . 4 (∀𝑥 ∈ {𝑦𝜑} ¬ 𝜒 ↔ ∀𝑥(𝜓 → ¬ 𝜒))
41, 3xchbinx 334 . . 3 (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ¬ ∀𝑥(𝜓 → ¬ 𝜒))
5 imnang 1842 . . 3 (∀𝑥(𝜓 → ¬ 𝜒) ↔ ∀𝑥 ¬ (𝜓𝜒))
64, 5xchbinx 334 . 2 (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ¬ ∀𝑥 ¬ (𝜓𝜒))
7 df-ex 1780 . 2 (∃𝑥(𝜓𝜒) ↔ ¬ ∀𝑥 ¬ (𝜓𝜒))
86, 7bitr4i 278 1 (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∃𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538  wex 1779  {cab 2708  wral 3045  wrex 3054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-ral 3046  df-rex 3055
This theorem is referenced by:  4sqlem12  16934  noinfno  27637  sleadd1  27903  addsuniflem  27915  addsasslem1  27917  addsasslem2  27918  mulsuniflem  28059  addsdilem1  28061  addsdilem2  28062  mulsasslem1  28073  mulsasslem2  28074  renegscl  28356  readdscl  28357  remulscl  28360  mblfinlem3  37660  mblfinlem4  37661  ismblfin  37662  itg2addnclem  37672  itg2addnc  37675  diophrex  42770
  Copyright terms: Public domain W3C validator