| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexab | Structured version Visualization version GIF version | ||
| Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.) Reduce axiom usage. (Revised by GG, 2-Nov-2024.) |
| Ref | Expression |
|---|---|
| ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexab | ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∃𝑥(𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 3056 | . . . 4 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ¬ ∀𝑥 ∈ {𝑦 ∣ 𝜑} ¬ 𝜒) | |
| 2 | ralab.1 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ralab 3664 | . . . 4 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑} ¬ 𝜒 ↔ ∀𝑥(𝜓 → ¬ 𝜒)) |
| 4 | 1, 3 | xchbinx 334 | . . 3 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ¬ ∀𝑥(𝜓 → ¬ 𝜒)) |
| 5 | imnang 1842 | . . 3 ⊢ (∀𝑥(𝜓 → ¬ 𝜒) ↔ ∀𝑥 ¬ (𝜓 ∧ 𝜒)) | |
| 6 | 4, 5 | xchbinx 334 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ¬ ∀𝑥 ¬ (𝜓 ∧ 𝜒)) |
| 7 | df-ex 1780 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜒) ↔ ¬ ∀𝑥 ¬ (𝜓 ∧ 𝜒)) | |
| 8 | 6, 7 | bitr4i 278 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∃𝑥(𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 {cab 2707 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: 4sqlem12 16927 noinfno 27630 sleadd1 27896 addsuniflem 27908 addsasslem1 27910 addsasslem2 27911 mulsuniflem 28052 addsdilem1 28054 addsdilem2 28055 mulsasslem1 28066 mulsasslem2 28067 renegscl 28349 readdscl 28350 remulscl 28353 mblfinlem3 37653 mblfinlem4 37654 ismblfin 37655 itg2addnclem 37665 itg2addnc 37668 diophrex 42763 |
| Copyright terms: Public domain | W3C validator |