MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexab Structured version   Visualization version   GIF version

Theorem rexab 3657
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.) Reduce axiom usage. (Revised by GG, 2-Nov-2024.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
rexab (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∃𝑥(𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)

Proof of Theorem rexab
StepHypRef Expression
1 dfrex2 3056 . . . 4 (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ¬ ∀𝑥 ∈ {𝑦𝜑} ¬ 𝜒)
2 ralab.1 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
32ralab 3655 . . . 4 (∀𝑥 ∈ {𝑦𝜑} ¬ 𝜒 ↔ ∀𝑥(𝜓 → ¬ 𝜒))
41, 3xchbinx 334 . . 3 (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ¬ ∀𝑥(𝜓 → ¬ 𝜒))
5 imnang 1842 . . 3 (∀𝑥(𝜓 → ¬ 𝜒) ↔ ∀𝑥 ¬ (𝜓𝜒))
64, 5xchbinx 334 . 2 (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ¬ ∀𝑥 ¬ (𝜓𝜒))
7 df-ex 1780 . 2 (∃𝑥(𝜓𝜒) ↔ ¬ ∀𝑥 ¬ (𝜓𝜒))
86, 7bitr4i 278 1 (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∃𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538  wex 1779  {cab 2707  wral 3044  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-ral 3045  df-rex 3054
This theorem is referenced by:  4sqlem12  16886  noinfno  27646  sleadd1  27919  addsuniflem  27931  addsasslem1  27933  addsasslem2  27934  mulsuniflem  28075  addsdilem1  28077  addsdilem2  28078  mulsasslem1  28089  mulsasslem2  28090  renegscl  28385  readdscl  28386  remulscl  28389  mblfinlem3  37638  mblfinlem4  37639  ismblfin  37640  itg2addnclem  37650  itg2addnc  37653  diophrex  42748
  Copyright terms: Public domain W3C validator