| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexab | Structured version Visualization version GIF version | ||
| Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.) Reduce axiom usage. (Revised by GG, 2-Nov-2024.) |
| Ref | Expression |
|---|---|
| ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexab | ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∃𝑥(𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 3064 | . . . 4 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ¬ ∀𝑥 ∈ {𝑦 ∣ 𝜑} ¬ 𝜒) | |
| 2 | ralab.1 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ralab 3681 | . . . 4 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑} ¬ 𝜒 ↔ ∀𝑥(𝜓 → ¬ 𝜒)) |
| 4 | 1, 3 | xchbinx 334 | . . 3 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ¬ ∀𝑥(𝜓 → ¬ 𝜒)) |
| 5 | imnang 1842 | . . 3 ⊢ (∀𝑥(𝜓 → ¬ 𝜒) ↔ ∀𝑥 ¬ (𝜓 ∧ 𝜒)) | |
| 6 | 4, 5 | xchbinx 334 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ¬ ∀𝑥 ¬ (𝜓 ∧ 𝜒)) |
| 7 | df-ex 1780 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜒) ↔ ¬ ∀𝑥 ¬ (𝜓 ∧ 𝜒)) | |
| 8 | 6, 7 | bitr4i 278 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∃𝑥(𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 {cab 2714 ∀wral 3052 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: 4sqlem12 16981 noinfno 27687 sleadd1 27953 addsuniflem 27965 addsasslem1 27967 addsasslem2 27968 mulsuniflem 28109 addsdilem1 28111 addsdilem2 28112 mulsasslem1 28123 mulsasslem2 28124 renegscl 28406 readdscl 28407 remulscl 28410 mblfinlem3 37688 mblfinlem4 37689 ismblfin 37690 itg2addnclem 37700 itg2addnc 37703 diophrex 42765 |
| Copyright terms: Public domain | W3C validator |