MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raln Structured version   Visualization version   GIF version

Theorem raln 3069
Description: Restricted universally quantified negation expressed as a universally quantified negation. (Contributed by BJ, 16-Jul-2021.)
Assertion
Ref Expression
raln (∀𝑥𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥𝐴𝜑))

Proof of Theorem raln
StepHypRef Expression
1 df-ral 3062 . 2 (∀𝑥𝐴 ¬ 𝜑 ↔ ∀𝑥(𝑥𝐴 → ¬ 𝜑))
2 imnang 1842 . 2 (∀𝑥(𝑥𝐴 → ¬ 𝜑) ↔ ∀𝑥 ¬ (𝑥𝐴𝜑))
31, 2bitri 275 1 (∀𝑥𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wal 1537  wcel 2104  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 206  df-an 398  df-ral 3062
This theorem is referenced by:  ralnex  3072  rabeq0w  4323  rabeq0  4324
  Copyright terms: Public domain W3C validator