Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raln | Structured version Visualization version GIF version |
Description: Restricted universally quantified negation expressed as a universally quantified negation. (Contributed by BJ, 16-Jul-2021.) |
Ref | Expression |
---|---|
raln | ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3075 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) | |
2 | imnang 1843 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 1, 2 | bitri 278 | 1 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1536 ∈ wcel 2111 ∀wral 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ral 3075 |
This theorem is referenced by: ralnex 3163 rabeq0 4283 |
Copyright terms: Public domain | W3C validator |