MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0el Structured version   Visualization version   GIF version

Theorem n0el 4354
Description: Negated membership of the empty set in another class. (Contributed by Rodolfo Medina, 25-Sep-2010.)
Assertion
Ref Expression
n0el (¬ ∅ ∈ 𝐴 ↔ ∀𝑥𝐴𝑢 𝑢𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑢
Allowed substitution hint:   𝐴(𝑢)

Proof of Theorem n0el
StepHypRef Expression
1 df-ral 3054 . 2 (∀𝑥𝐴 ¬ ∀𝑢 ¬ 𝑢𝑥 ↔ ∀𝑥(𝑥𝐴 → ¬ ∀𝑢 ¬ 𝑢𝑥))
2 df-ex 1774 . . 3 (∃𝑢 𝑢𝑥 ↔ ¬ ∀𝑢 ¬ 𝑢𝑥)
32ralbii 3085 . 2 (∀𝑥𝐴𝑢 𝑢𝑥 ↔ ∀𝑥𝐴 ¬ ∀𝑢 ¬ 𝑢𝑥)
4 alnex 1775 . . 3 (∀𝑥 ¬ (𝑥𝐴 ∧ ∀𝑢 ¬ 𝑢𝑥) ↔ ¬ ∃𝑥(𝑥𝐴 ∧ ∀𝑢 ¬ 𝑢𝑥))
5 imnang 1836 . . 3 (∀𝑥(𝑥𝐴 → ¬ ∀𝑢 ¬ 𝑢𝑥) ↔ ∀𝑥 ¬ (𝑥𝐴 ∧ ∀𝑢 ¬ 𝑢𝑥))
6 0el 4353 . . . . 5 (∅ ∈ 𝐴 ↔ ∃𝑥𝐴𝑢 ¬ 𝑢𝑥)
7 df-rex 3063 . . . . 5 (∃𝑥𝐴𝑢 ¬ 𝑢𝑥 ↔ ∃𝑥(𝑥𝐴 ∧ ∀𝑢 ¬ 𝑢𝑥))
86, 7bitri 275 . . . 4 (∅ ∈ 𝐴 ↔ ∃𝑥(𝑥𝐴 ∧ ∀𝑢 ¬ 𝑢𝑥))
98notbii 320 . . 3 (¬ ∅ ∈ 𝐴 ↔ ¬ ∃𝑥(𝑥𝐴 ∧ ∀𝑢 ¬ 𝑢𝑥))
104, 5, 93bitr4ri 304 . 2 (¬ ∅ ∈ 𝐴 ↔ ∀𝑥(𝑥𝐴 → ¬ ∀𝑢 ¬ 𝑢𝑥))
111, 3, 103bitr4ri 304 1 (¬ ∅ ∈ 𝐴 ↔ ∀𝑥𝐴𝑢 𝑢𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1531  wex 1773  wcel 2098  wral 3053  wrex 3062  c0 4315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-dif 3944  df-nul 4316
This theorem is referenced by:  n0el2  37696  prter2  38245
  Copyright terms: Public domain W3C validator