![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0el | Structured version Visualization version GIF version |
Description: Negated membership of the empty set in another class. (Contributed by Rodolfo Medina, 25-Sep-2010.) |
Ref | Expression |
---|---|
n0el | ⊢ (¬ ∅ ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑢 𝑢 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3062 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) | |
2 | df-ex 1783 | . . 3 ⊢ (∃𝑢 𝑢 ∈ 𝑥 ↔ ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥) | |
3 | 2 | ralbii 3093 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑢 𝑢 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥) |
4 | alnex 1784 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥) ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) | |
5 | imnang 1845 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥) ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) | |
6 | 0el 4321 | . . . . 5 ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑢 ¬ 𝑢 ∈ 𝑥) | |
7 | df-rex 3071 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑢 ¬ 𝑢 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) | |
8 | 6, 7 | bitri 275 | . . . 4 ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) |
9 | 8 | notbii 320 | . . 3 ⊢ (¬ ∅ ∈ 𝐴 ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) |
10 | 4, 5, 9 | 3bitr4ri 304 | . 2 ⊢ (¬ ∅ ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) |
11 | 1, 3, 10 | 3bitr4ri 304 | 1 ⊢ (¬ ∅ ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑢 𝑢 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 ∃wex 1782 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 ∅c0 4283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-dif 3914 df-nul 4284 |
This theorem is referenced by: n0el2 36840 prter2 37389 |
Copyright terms: Public domain | W3C validator |