| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0el | Structured version Visualization version GIF version | ||
| Description: Negated membership of the empty set in another class. (Contributed by Rodolfo Medina, 25-Sep-2010.) |
| Ref | Expression |
|---|---|
| n0el | ⊢ (¬ ∅ ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑢 𝑢 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3048 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) | |
| 2 | df-ex 1781 | . . 3 ⊢ (∃𝑢 𝑢 ∈ 𝑥 ↔ ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥) | |
| 3 | 2 | ralbii 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑢 𝑢 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥) |
| 4 | alnex 1782 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥) ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) | |
| 5 | imnang 1843 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥) ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) | |
| 6 | 0el 4308 | . . . . 5 ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑢 ¬ 𝑢 ∈ 𝑥) | |
| 7 | df-rex 3057 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑢 ¬ 𝑢 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) | |
| 8 | 6, 7 | bitri 275 | . . . 4 ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) |
| 9 | 8 | notbii 320 | . . 3 ⊢ (¬ ∅ ∈ 𝐴 ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) |
| 10 | 4, 5, 9 | 3bitr4ri 304 | . 2 ⊢ (¬ ∅ ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) |
| 11 | 1, 3, 10 | 3bitr4ri 304 | 1 ⊢ (¬ ∅ ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑢 𝑢 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∃wex 1780 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∅c0 4278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-dif 3900 df-nul 4279 |
| This theorem is referenced by: n0el2 38363 prter2 38920 |
| Copyright terms: Public domain | W3C validator |