Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sb5ALTVD Structured version   Visualization version   GIF version

Theorem sb5ALTVD 44401
Description: The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 20 Excercise 3.a., which is sb5 2262, found in the "Answers to Starred Exercises" on page 457 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sb5ALT 44013 is sb5ALTVD 44401 without virtual deductions and was automatically derived from sb5ALTVD 44401.
1:: (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥]𝜑   )
2:: [𝑦 / 𝑥]𝑥 = 𝑦
3:1,2: (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥](𝑥 = 𝑦 𝜑)   )
4:3: (   [𝑦 / 𝑥]𝜑   ▶   𝑥(𝑥 = 𝑦𝜑 )   )
5:4: ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑) )
6:: (   𝑥(𝑥 = 𝑦𝜑)   ▶   𝑥(𝑥 = 𝑦𝜑)   )
7:: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   (𝑥 = 𝑦𝜑)   )
8:7: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   𝜑   )
9:7: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   𝑥 = 𝑦   )
10:8,9: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   [𝑦 / 𝑥]𝜑   )
101:: ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
11:101,10: (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑 )
12:5,11: (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑 )) ∧ (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))
qed:12: ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑) )
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sb5ALTVD ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb5ALTVD
StepHypRef Expression
1 idn1 44062 . . . . . 6 (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥]𝜑   )
2 equsb1 2485 . . . . . 6 [𝑦 / 𝑥]𝑥 = 𝑦
3 sban 2075 . . . . . . 7 ([𝑦 / 𝑥](𝑥 = 𝑦𝜑) ↔ ([𝑦 / 𝑥]𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑))
43simplbi2com 501 . . . . . 6 ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝑥 = 𝑦𝜑)))
51, 2, 4e10 44182 . . . . 5 (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥](𝑥 = 𝑦𝜑)   )
6 spsbe 2077 . . . . 5 ([𝑦 / 𝑥](𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
75, 6e1a 44115 . . . 4 (   [𝑦 / 𝑥]𝜑   ▶   𝑥(𝑥 = 𝑦𝜑)   )
87in1 44059 . . 3 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
9 hbs1 2260 . . . 4 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
10 idn2 44101 . . . . . 6 (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑)   ▶   (𝑥 = 𝑦𝜑)   )
11 simpr 483 . . . . . 6 ((𝑥 = 𝑦𝜑) → 𝜑)
1210, 11e2 44119 . . . . 5 (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑)   ▶   𝜑   )
13 simpl 481 . . . . . 6 ((𝑥 = 𝑦𝜑) → 𝑥 = 𝑦)
1410, 13e2 44119 . . . . 5 (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑)   ▶   𝑥 = 𝑦   )
15 sbequ1 2235 . . . . . 6 (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
1615com12 32 . . . . 5 (𝜑 → (𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑))
1712, 14, 16e22 44159 . . . 4 (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑)   ▶   [𝑦 / 𝑥]𝜑   )
189, 17exinst 44112 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
198, 18pm3.2i 469 . 2 (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑)) ∧ (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))
20 impbi 207 . . 3 (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑)) → ((∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))))
2120imp 405 . 2 ((([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑)) ∧ (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑)))
2219, 21e0a 44260 1 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  [wsb 2059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-12 2166  ax-13 2366
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-nf 1778  df-sb 2060  df-vd1 44058  df-vd2 44066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator