Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sb5ALTVD Structured version   Visualization version   GIF version

Theorem sb5ALTVD 44911
Description: The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 20 Excercise 3.a., which is sb5 2274, found in the "Answers to Starred Exercises" on page 457 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sb5ALT 44523 is sb5ALTVD 44911 without virtual deductions and was automatically derived from sb5ALTVD 44911.
1:: (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥]𝜑   )
2:: [𝑦 / 𝑥]𝑥 = 𝑦
3:1,2: (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥](𝑥 = 𝑦 𝜑)   )
4:3: (   [𝑦 / 𝑥]𝜑   ▶   𝑥(𝑥 = 𝑦𝜑 )   )
5:4: ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑) )
6:: (   𝑥(𝑥 = 𝑦𝜑)   ▶   𝑥(𝑥 = 𝑦𝜑)   )
7:: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   (𝑥 = 𝑦𝜑)   )
8:7: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   𝜑   )
9:7: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   𝑥 = 𝑦   )
10:8,9: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   [𝑦 / 𝑥]𝜑   )
101:: ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
11:101,10: (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑 )
12:5,11: (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑 )) ∧ (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))
qed:12: ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑) )
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sb5ALTVD ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb5ALTVD
StepHypRef Expression
1 idn1 44572 . . . . . 6 (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥]𝜑   )
2 equsb1 2494 . . . . . 6 [𝑦 / 𝑥]𝑥 = 𝑦
3 sban 2078 . . . . . . 7 ([𝑦 / 𝑥](𝑥 = 𝑦𝜑) ↔ ([𝑦 / 𝑥]𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑))
43simplbi2com 502 . . . . . 6 ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝑥 = 𝑦𝜑)))
51, 2, 4e10 44692 . . . . 5 (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥](𝑥 = 𝑦𝜑)   )
6 spsbe 2080 . . . . 5 ([𝑦 / 𝑥](𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
75, 6e1a 44625 . . . 4 (   [𝑦 / 𝑥]𝜑   ▶   𝑥(𝑥 = 𝑦𝜑)   )
87in1 44569 . . 3 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
9 hbs1 2272 . . . 4 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
10 idn2 44611 . . . . . 6 (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑)   ▶   (𝑥 = 𝑦𝜑)   )
11 simpr 484 . . . . . 6 ((𝑥 = 𝑦𝜑) → 𝜑)
1210, 11e2 44629 . . . . 5 (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑)   ▶   𝜑   )
13 simpl 482 . . . . . 6 ((𝑥 = 𝑦𝜑) → 𝑥 = 𝑦)
1410, 13e2 44629 . . . . 5 (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑)   ▶   𝑥 = 𝑦   )
15 sbequ1 2246 . . . . . 6 (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
1615com12 32 . . . . 5 (𝜑 → (𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑))
1712, 14, 16e22 44669 . . . 4 (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑)   ▶   [𝑦 / 𝑥]𝜑   )
189, 17exinst 44622 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
198, 18pm3.2i 470 . 2 (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑)) ∧ (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))
20 impbi 208 . . 3 (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑)) → ((∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))))
2120imp 406 . 2 ((([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑)) ∧ (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑)))
2219, 21e0a 44770 1 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  [wsb 2062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-10 2139  ax-12 2175  ax-13 2375
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1777  df-nf 1781  df-sb 2063  df-vd1 44568  df-vd2 44576
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator