Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sb5ALTVD Structured version   Visualization version   GIF version

Theorem sb5ALTVD 44250
Description: The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 20 Excercise 3.a., which is sb5 2259, found in the "Answers to Starred Exercises" on page 457 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sb5ALT 43862 is sb5ALTVD 44250 without virtual deductions and was automatically derived from sb5ALTVD 44250.
1:: (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥]𝜑   )
2:: [𝑦 / 𝑥]𝑥 = 𝑦
3:1,2: (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥](𝑥 = 𝑦 𝜑)   )
4:3: (   [𝑦 / 𝑥]𝜑   ▶   𝑥(𝑥 = 𝑦𝜑 )   )
5:4: ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑) )
6:: (   𝑥(𝑥 = 𝑦𝜑)   ▶   𝑥(𝑥 = 𝑦𝜑)   )
7:: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   (𝑥 = 𝑦𝜑)   )
8:7: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   𝜑   )
9:7: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   𝑥 = 𝑦   )
10:8,9: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   [𝑦 / 𝑥]𝜑   )
101:: ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
11:101,10: (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑 )
12:5,11: (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑 )) ∧ (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))
qed:12: ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑) )
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sb5ALTVD ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb5ALTVD
StepHypRef Expression
1 idn1 43911 . . . . . 6 (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥]𝜑   )
2 equsb1 2484 . . . . . 6 [𝑦 / 𝑥]𝑥 = 𝑦
3 sban 2075 . . . . . . 7 ([𝑦 / 𝑥](𝑥 = 𝑦𝜑) ↔ ([𝑦 / 𝑥]𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑))
43simplbi2com 502 . . . . . 6 ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝑥 = 𝑦𝜑)))
51, 2, 4e10 44031 . . . . 5 (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥](𝑥 = 𝑦𝜑)   )
6 spsbe 2077 . . . . 5 ([𝑦 / 𝑥](𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
75, 6e1a 43964 . . . 4 (   [𝑦 / 𝑥]𝜑   ▶   𝑥(𝑥 = 𝑦𝜑)   )
87in1 43908 . . 3 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
9 hbs1 2257 . . . 4 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
10 idn2 43950 . . . . . 6 (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑)   ▶   (𝑥 = 𝑦𝜑)   )
11 simpr 484 . . . . . 6 ((𝑥 = 𝑦𝜑) → 𝜑)
1210, 11e2 43968 . . . . 5 (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑)   ▶   𝜑   )
13 simpl 482 . . . . . 6 ((𝑥 = 𝑦𝜑) → 𝑥 = 𝑦)
1410, 13e2 43968 . . . . 5 (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑)   ▶   𝑥 = 𝑦   )
15 sbequ1 2232 . . . . . 6 (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
1615com12 32 . . . . 5 (𝜑 → (𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑))
1712, 14, 16e22 44008 . . . 4 (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑)   ▶   [𝑦 / 𝑥]𝜑   )
189, 17exinst 43961 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
198, 18pm3.2i 470 . 2 (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑)) ∧ (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))
20 impbi 207 . . 3 (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑)) → ((∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))))
2120imp 406 . 2 ((([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑)) ∧ (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑)))
2219, 21e0a 44109 1 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wex 1773  [wsb 2059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-12 2163  ax-13 2365
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1774  df-nf 1778  df-sb 2060  df-vd1 43907  df-vd2 43915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator