![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sb5ALTVD | Structured version Visualization version GIF version |
Description: The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Unit 20
Excercise 3.a., which is sb5 2274, found in the "Answers to Starred
Exercises" on page 457 of "Understanding Symbolic Logic", Fifth
Edition (2008), by Virginia Klenk. The same proof may also be
interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It
was completed automatically by the tools program completeusersproof.cmd,
which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof
Assistant. sb5ALT 44523 is sb5ALTVD 44911 without virtual deductions and
was automatically derived from sb5ALTVD 44911.
|
Ref | Expression |
---|---|
sb5ALTVD | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn1 44572 | . . . . . 6 ⊢ ( [𝑦 / 𝑥]𝜑 ▶ [𝑦 / 𝑥]𝜑 ) | |
2 | equsb1 2494 | . . . . . 6 ⊢ [𝑦 / 𝑥]𝑥 = 𝑦 | |
3 | sban 2078 | . . . . . . 7 ⊢ ([𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑) ↔ ([𝑦 / 𝑥]𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑)) | |
4 | 3 | simplbi2com 502 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑))) |
5 | 1, 2, 4 | e10 44692 | . . . . 5 ⊢ ( [𝑦 / 𝑥]𝜑 ▶ [𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑) ) |
6 | spsbe 2080 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
7 | 5, 6 | e1a 44625 | . . . 4 ⊢ ( [𝑦 / 𝑥]𝜑 ▶ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ) |
8 | 7 | in1 44569 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
9 | hbs1 2272 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
10 | idn2 44611 | . . . . . 6 ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑) ▶ (𝑥 = 𝑦 ∧ 𝜑) ) | |
11 | simpr 484 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝜑) | |
12 | 10, 11 | e2 44629 | . . . . 5 ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑) ▶ 𝜑 ) |
13 | simpl 482 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝑥 = 𝑦) | |
14 | 10, 13 | e2 44629 | . . . . 5 ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑) ▶ 𝑥 = 𝑦 ) |
15 | sbequ1 2246 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
16 | 15 | com12 32 | . . . . 5 ⊢ (𝜑 → (𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑)) |
17 | 12, 14, 16 | e22 44669 | . . . 4 ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑) ▶ [𝑦 / 𝑥]𝜑 ) |
18 | 9, 17 | exinst 44622 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑) |
19 | 8, 18 | pm3.2i 470 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ∧ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑)) |
20 | impbi 208 | . . 3 ⊢ (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ((∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)))) | |
21 | 20 | imp 406 | . 2 ⊢ ((([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ∧ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑)) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
22 | 19, 21 | e0a 44770 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 [wsb 2062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-10 2139 ax-12 2175 ax-13 2375 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-nf 1781 df-sb 2063 df-vd1 44568 df-vd2 44576 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |