| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sb5ALTVD | Structured version Visualization version GIF version | ||
Description: The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Unit 20
Excercise 3.a., which is sb5 2275, found in the "Answers to Starred
Exercises" on page 457 of "Understanding Symbolic Logic", Fifth
Edition (2008), by Virginia Klenk. The same proof may also be
interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It
was completed automatically by the tools program completeusersproof.cmd,
which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof
Assistant. sb5ALT 44502 is sb5ALTVD 44890 without virtual deductions and
was automatically derived from sb5ALTVD 44890.
|
| Ref | Expression |
|---|---|
| sb5ALTVD | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 44551 | . . . . . 6 ⊢ ( [𝑦 / 𝑥]𝜑 ▶ [𝑦 / 𝑥]𝜑 ) | |
| 2 | equsb1 2494 | . . . . . 6 ⊢ [𝑦 / 𝑥]𝑥 = 𝑦 | |
| 3 | sban 2079 | . . . . . . 7 ⊢ ([𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑) ↔ ([𝑦 / 𝑥]𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑)) | |
| 4 | 3 | simplbi2com 502 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑))) |
| 5 | 1, 2, 4 | e10 44671 | . . . . 5 ⊢ ( [𝑦 / 𝑥]𝜑 ▶ [𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑) ) |
| 6 | spsbe 2081 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 7 | 5, 6 | e1a 44604 | . . . 4 ⊢ ( [𝑦 / 𝑥]𝜑 ▶ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ) |
| 8 | 7 | in1 44548 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| 9 | hbs1 2273 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
| 10 | idn2 44590 | . . . . . 6 ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑) ▶ (𝑥 = 𝑦 ∧ 𝜑) ) | |
| 11 | simpr 484 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝜑) | |
| 12 | 10, 11 | e2 44608 | . . . . 5 ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑) ▶ 𝜑 ) |
| 13 | simpl 482 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝑥 = 𝑦) | |
| 14 | 10, 13 | e2 44608 | . . . . 5 ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑) ▶ 𝑥 = 𝑦 ) |
| 15 | sbequ1 2247 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 16 | 15 | com12 32 | . . . . 5 ⊢ (𝜑 → (𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑)) |
| 17 | 12, 14, 16 | e22 44648 | . . . 4 ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑) ▶ [𝑦 / 𝑥]𝜑 ) |
| 18 | 9, 17 | exinst 44601 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑) |
| 19 | 8, 18 | pm3.2i 470 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ∧ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑)) |
| 20 | impbi 208 | . . 3 ⊢ (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ((∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)))) | |
| 21 | 20 | imp 406 | . 2 ⊢ ((([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ∧ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑)) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| 22 | 19, 21 | e0a 44749 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 ax-13 2375 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-sb 2064 df-vd1 44547 df-vd2 44555 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |