| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sb5ALTVD | Structured version Visualization version GIF version | ||
Description: The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Unit 20
Excercise 3.a., which is sb5 2278, found in the "Answers to Starred
Exercises" on page 457 of "Understanding Symbolic Logic", Fifth
Edition (2008), by Virginia Klenk. The same proof may also be
interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It
was completed automatically by the tools program completeusersproof.cmd,
which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof
Assistant. sb5ALT 44566 is sb5ALTVD 44953 without virtual deductions and
was automatically derived from sb5ALTVD 44953.
|
| Ref | Expression |
|---|---|
| sb5ALTVD | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 44615 | . . . . . 6 ⊢ ( [𝑦 / 𝑥]𝜑 ▶ [𝑦 / 𝑥]𝜑 ) | |
| 2 | equsb1 2491 | . . . . . 6 ⊢ [𝑦 / 𝑥]𝑥 = 𝑦 | |
| 3 | sban 2083 | . . . . . . 7 ⊢ ([𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑) ↔ ([𝑦 / 𝑥]𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑)) | |
| 4 | 3 | simplbi2com 502 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑))) |
| 5 | 1, 2, 4 | e10 44735 | . . . . 5 ⊢ ( [𝑦 / 𝑥]𝜑 ▶ [𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑) ) |
| 6 | spsbe 2085 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 7 | 5, 6 | e1a 44668 | . . . 4 ⊢ ( [𝑦 / 𝑥]𝜑 ▶ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ) |
| 8 | 7 | in1 44612 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| 9 | hbs1 2276 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
| 10 | idn2 44654 | . . . . . 6 ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑) ▶ (𝑥 = 𝑦 ∧ 𝜑) ) | |
| 11 | simpr 484 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝜑) | |
| 12 | 10, 11 | e2 44672 | . . . . 5 ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑) ▶ 𝜑 ) |
| 13 | simpl 482 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝑥 = 𝑦) | |
| 14 | 10, 13 | e2 44672 | . . . . 5 ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑) ▶ 𝑥 = 𝑦 ) |
| 15 | sbequ1 2251 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 16 | 15 | com12 32 | . . . . 5 ⊢ (𝜑 → (𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑)) |
| 17 | 12, 14, 16 | e22 44712 | . . . 4 ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑) ▶ [𝑦 / 𝑥]𝜑 ) |
| 18 | 9, 17 | exinst 44665 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑) |
| 19 | 8, 18 | pm3.2i 470 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ∧ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑)) |
| 20 | impbi 208 | . . 3 ⊢ (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ((∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)))) | |
| 21 | 20 | imp 406 | . 2 ⊢ ((([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ∧ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑)) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| 22 | 19, 21 | e0a 44812 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-vd1 44611 df-vd2 44619 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |