Proof of Theorem imbi12VD
Step | Hyp | Ref
| Expression |
1 | | idn2 42233 |
. . . . . 6
⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) ▶ (𝜒 ↔ 𝜃) ) |
2 | | idn1 42194 |
. . . . . . 7
⊢ ( (𝜑 ↔ 𝜓) ▶ (𝜑 ↔ 𝜓) ) |
3 | | idn3 42235 |
. . . . . . 7
⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜑 → 𝜒) ▶ (𝜑 → 𝜒) ) |
4 | | biimpr 219 |
. . . . . . . 8
⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
5 | 4 | imim1d 82 |
. . . . . . 7
⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜒) → (𝜓 → 𝜒))) |
6 | 2, 3, 5 | e13 42368 |
. . . . . 6
⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜑 → 𝜒) ▶ (𝜓 → 𝜒) ) |
7 | | biimp 214 |
. . . . . . 7
⊢ ((𝜒 ↔ 𝜃) → (𝜒 → 𝜃)) |
8 | 7 | imim2d 57 |
. . . . . 6
⊢ ((𝜒 ↔ 𝜃) → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
9 | 1, 6, 8 | e23 42375 |
. . . . 5
⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜑 → 𝜒) ▶ (𝜓 → 𝜃) ) |
10 | 9 | in3 42229 |
. . . 4
⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) ▶ ((𝜑 → 𝜒) → (𝜓 → 𝜃)) ) |
11 | | idn3 42235 |
. . . . . . 7
⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜓 → 𝜃) ▶ (𝜓 → 𝜃) ) |
12 | | biimp 214 |
. . . . . . . 8
⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
13 | 12 | imim1d 82 |
. . . . . . 7
⊢ ((𝜑 ↔ 𝜓) → ((𝜓 → 𝜃) → (𝜑 → 𝜃))) |
14 | 2, 11, 13 | e13 42368 |
. . . . . 6
⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜓 → 𝜃) ▶ (𝜑 → 𝜃) ) |
15 | | biimpr 219 |
. . . . . . 7
⊢ ((𝜒 ↔ 𝜃) → (𝜃 → 𝜒)) |
16 | 15 | imim2d 57 |
. . . . . 6
⊢ ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜃) → (𝜑 → 𝜒))) |
17 | 1, 14, 16 | e23 42375 |
. . . . 5
⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜓 → 𝜃) ▶ (𝜑 → 𝜒) ) |
18 | 17 | in3 42229 |
. . . 4
⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) ▶ ((𝜓 → 𝜃) → (𝜑 → 𝜒)) ) |
19 | | impbi 207 |
. . . 4
⊢ (((𝜑 → 𝜒) → (𝜓 → 𝜃)) → (((𝜓 → 𝜃) → (𝜑 → 𝜒)) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) |
20 | 10, 18, 19 | e22 42291 |
. . 3
⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) ▶ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) ) |
21 | 20 | in2 42225 |
. 2
⊢ ( (𝜑 ↔ 𝜓) ▶ ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))) ) |
22 | 21 | in1 42191 |
1
⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) |