Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-moeub Structured version   Visualization version   GIF version

Theorem bj-moeub 34058
 Description: Uniqueness is equivalent to existence being equivalent to unique existence. (Contributed by BJ, 14-Oct-2022.)
Assertion
Ref Expression
bj-moeub (∃*𝑥𝜑 ↔ (∃𝑥𝜑 ↔ ∃!𝑥𝜑))

Proof of Theorem bj-moeub
StepHypRef Expression
1 moeu 2663 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
2 euex 2657 . . . 4 (∃!𝑥𝜑 → ∃𝑥𝜑)
3 impbi 209 . . . 4 ((∃𝑥𝜑 → ∃!𝑥𝜑) → ((∃!𝑥𝜑 → ∃𝑥𝜑) → (∃𝑥𝜑 ↔ ∃!𝑥𝜑)))
42, 3mpi 20 . . 3 ((∃𝑥𝜑 → ∃!𝑥𝜑) → (∃𝑥𝜑 ↔ ∃!𝑥𝜑))
5 biimp 216 . . 3 ((∃𝑥𝜑 ↔ ∃!𝑥𝜑) → (∃𝑥𝜑 → ∃!𝑥𝜑))
64, 5impbii 210 . 2 ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑥𝜑 ↔ ∃!𝑥𝜑))
71, 6bitri 276 1 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 ↔ ∃!𝑥𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207  ∃wex 1773  ∃*wmo 2613  ∃!weu 2648 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963 This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1774  df-mo 2615  df-eu 2649 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator