Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-moeub | Structured version Visualization version GIF version |
Description: Uniqueness is equivalent to existence being equivalent to unique existence. (Contributed by BJ, 14-Oct-2022.) |
Ref | Expression |
---|---|
bj-moeub | ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 ↔ ∃!𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeu 2583 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
2 | euex 2577 | . . . 4 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
3 | impbi 207 | . . . 4 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) → ((∃!𝑥𝜑 → ∃𝑥𝜑) → (∃𝑥𝜑 ↔ ∃!𝑥𝜑))) | |
4 | 2, 3 | mpi 20 | . . 3 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) → (∃𝑥𝜑 ↔ ∃!𝑥𝜑)) |
5 | biimp 214 | . . 3 ⊢ ((∃𝑥𝜑 ↔ ∃!𝑥𝜑) → (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
6 | 4, 5 | impbii 208 | . 2 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑥𝜑 ↔ ∃!𝑥𝜑)) |
7 | 1, 6 | bitri 274 | 1 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 ↔ ∃!𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1782 ∃*wmo 2538 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-mo 2540 df-eu 2569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |