Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcim2gVD Structured version   Visualization version   GIF version

Theorem sbcim2gVD 41596
Description: Distribution of class substitution over a left-nested implication. Similar to sbcimg 3767. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcim2g 41259 is sbcim2gVD 41596 without virtual deductions and was automatically derived from sbcim2gVD 41596.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:: ⊢ (   𝐴 ∈ 𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ▶   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ) 3:1,2: ⊢ (   𝐴 ∈ 𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒))   ) 4:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ) 5:3,4: ⊢ (   𝐴 ∈ 𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ) 6:5: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))   ) 7:: ⊢ (   𝐴 ∈ 𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ) 8:4,7: ⊢ (   𝐴 ∈ 𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒))   ) 9:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)))   ) 10:8,9: ⊢ (   𝐴 ∈ 𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ▶   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ) 11:10: ⊢ (   𝐴 ∈ 𝐵   ▶   (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)))   ) 12:6,11: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))   ) qed:12: ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcim2gVD (𝐴𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))

Proof of Theorem sbcim2gVD
StepHypRef Expression
1 idn1 41295 . . . . . 6 (   𝐴𝐵   ▶   𝐴𝐵   )
2 idn2 41334 . . . . . 6 (   𝐴𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓𝜒))   ▶   [𝐴 / 𝑥](𝜑 → (𝜓𝜒))   )
3 sbcimg 3767 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))))
43biimpd 232 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))))
51, 2, 4e12 41445 . . . . 5 (   𝐴𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓𝜒))   ▶   ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))   )
6 sbcimg 3767 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
71, 6e1a 41348 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   )
8 imbi2 352 . . . . . 6 (([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
98biimpcd 252 . . . . 5 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)) → (([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
105, 7, 9e21 41451 . . . 4 (   𝐴𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   )
1110in2 41326 . . 3 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))   )
12 idn2 41334 . . . . . 6 (   𝐴𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   )
13 biimpr 223 . . . . . . 7 (([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒) → [𝐴 / 𝑥](𝜓𝜒)))
1413imim2d 57 . . . . . 6 (([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))))
157, 12, 14e12 41445 . . . . 5 (   𝐴𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   ▶   ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))   )
161, 3e1a 41348 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)))   )
17 biimpr 223 . . . . . 6 (([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))) → (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓𝜒))))
1817com12 32 . . . . 5 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)) → (([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))) → [𝐴 / 𝑥](𝜑 → (𝜓𝜒))))
1915, 16, 18e21 41451 . . . 4 (   𝐴𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   ▶   [𝐴 / 𝑥](𝜑 → (𝜓𝜒))   )
2019in2 41326 . . 3 (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓𝜒)))   )
21 impbi 211 . . 3 (([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))) → ((([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓𝜒))) → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))))
2211, 20, 21e11 41409 . 2 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))   )
2322in1 41292 1 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∈ wcel 2111  [wsbc 3720 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-sbc 3721  df-vd1 41291  df-vd2 41299 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator