Proof of Theorem sbcim2gVD
Step | Hyp | Ref
| Expression |
1 | | idn1 42194 |
. . . . . 6
⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
2 | | idn2 42233 |
. . . . . 6
⊢ ( 𝐴 ∈ 𝐵 , [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ▶ [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ) |
3 | | sbcimg 3767 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)))) |
4 | 3 | biimpd 228 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)))) |
5 | 1, 2, 4 | e12 42344 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐵 , [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ▶ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)) ) |
6 | | sbcimg 3767 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))) |
7 | 1, 6 | e1a 42247 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) ) |
8 | | imbi2 349 |
. . . . . 6
⊢
(([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) |
9 | 8 | biimpcd 248 |
. . . . 5
⊢
(([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)) → (([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) |
10 | 5, 7, 9 | e21 42350 |
. . . 4
⊢ ( 𝐴 ∈ 𝐵 , [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ▶ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) ) |
11 | 10 | in2 42225 |
. . 3
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))) ) |
12 | | idn2 42233 |
. . . . . 6
⊢ ( 𝐴 ∈ 𝐵 , ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) ▶ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) ) |
13 | | biimpr 219 |
. . . . . . 7
⊢
(([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒) → [𝐴 / 𝑥](𝜓 → 𝜒))) |
14 | 13 | imim2d 57 |
. . . . . 6
⊢
(([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)))) |
15 | 7, 12, 14 | e12 42344 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐵 , ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) ▶ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)) ) |
16 | 1, 3 | e1a 42247 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒))) ) |
17 | | biimpr 219 |
. . . . . 6
⊢
(([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒))) → (([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)))) |
18 | 17 | com12 32 |
. . . . 5
⊢
(([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)) → (([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒))) → [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)))) |
19 | 15, 16, 18 | e21 42350 |
. . . 4
⊢ ( 𝐴 ∈ 𝐵 , ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) ▶ [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ) |
20 | 19 | in2 42225 |
. . 3
⊢ ( 𝐴 ∈ 𝐵 ▶ (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))) ) |
21 | | impbi 207 |
. . 3
⊢
(([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))) → ((([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))) → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))))) |
22 | 11, 20, 21 | e11 42308 |
. 2
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))) ) |
23 | 22 | in1 42191 |
1
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) |