Proof of Theorem eqsbc2VD
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | idn1 44594 | . . . . . . 7
⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) | 
| 2 |  | eqsbc1 3835 | . . . . . . 7
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝑥 = 𝐶 ↔ 𝐴 = 𝐶)) | 
| 3 | 1, 2 | e1a 44647 | . . . . . 6
⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑥 = 𝐶 ↔ 𝐴 = 𝐶)   ) | 
| 4 |  | eqcom 2744 | . . . . . . . . . 10
⊢ (𝐶 = 𝑥 ↔ 𝑥 = 𝐶) | 
| 5 | 4 | sbcbii 3846 | . . . . . . . . 9
⊢
([𝐴 / 𝑥]𝐶 = 𝑥 ↔ [𝐴 / 𝑥]𝑥 = 𝐶) | 
| 6 | 5 | a1i 11 | . . . . . . . 8
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 = 𝑥 ↔ [𝐴 / 𝑥]𝑥 = 𝐶)) | 
| 7 | 1, 6 | e1a 44647 | . . . . . . 7
⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝐶 = 𝑥 ↔ [𝐴 / 𝑥]𝑥 = 𝐶)   ) | 
| 8 |  | idn2 44633 | . . . . . . 7
⊢ (   𝐴 ∈ 𝐵   ,   [𝐴 / 𝑥]𝐶 = 𝑥   ▶   [𝐴 / 𝑥]𝐶 = 𝑥   ) | 
| 9 |  | biimp 215 | . . . . . . 7
⊢
(([𝐴 / 𝑥]𝐶 = 𝑥 ↔ [𝐴 / 𝑥]𝑥 = 𝐶) → ([𝐴 / 𝑥]𝐶 = 𝑥 → [𝐴 / 𝑥]𝑥 = 𝐶)) | 
| 10 | 7, 8, 9 | e12 44744 | . . . . . 6
⊢ (   𝐴 ∈ 𝐵   ,   [𝐴 / 𝑥]𝐶 = 𝑥   ▶   [𝐴 / 𝑥]𝑥 = 𝐶   ) | 
| 11 |  | biimp 215 | . . . . . 6
⊢
(([𝐴 / 𝑥]𝑥 = 𝐶 ↔ 𝐴 = 𝐶) → ([𝐴 / 𝑥]𝑥 = 𝐶 → 𝐴 = 𝐶)) | 
| 12 | 3, 10, 11 | e12 44744 | . . . . 5
⊢ (   𝐴 ∈ 𝐵   ,   [𝐴 / 𝑥]𝐶 = 𝑥   ▶   𝐴 = 𝐶   ) | 
| 13 |  | eqcom 2744 | . . . . 5
⊢ (𝐴 = 𝐶 ↔ 𝐶 = 𝐴) | 
| 14 | 12, 13 | e2bi 44652 | . . . 4
⊢ (   𝐴 ∈ 𝐵   ,   [𝐴 / 𝑥]𝐶 = 𝑥   ▶   𝐶 = 𝐴   ) | 
| 15 | 14 | in2 44625 | . . 3
⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝐶 = 𝑥 → 𝐶 = 𝐴)   ) | 
| 16 |  | idn2 44633 | . . . . . . 7
⊢ (   𝐴 ∈ 𝐵   ,   𝐶 = 𝐴   ▶   𝐶 = 𝐴   ) | 
| 17 | 16, 13 | e2bir 44653 | . . . . . 6
⊢ (   𝐴 ∈ 𝐵   ,   𝐶 = 𝐴   ▶   𝐴 = 𝐶   ) | 
| 18 |  | biimpr 220 | . . . . . 6
⊢
(([𝐴 / 𝑥]𝑥 = 𝐶 ↔ 𝐴 = 𝐶) → (𝐴 = 𝐶 → [𝐴 / 𝑥]𝑥 = 𝐶)) | 
| 19 | 3, 17, 18 | e12 44744 | . . . . 5
⊢ (   𝐴 ∈ 𝐵   ,   𝐶 = 𝐴   ▶   [𝐴 / 𝑥]𝑥 = 𝐶   ) | 
| 20 |  | biimpr 220 | . . . . 5
⊢
(([𝐴 / 𝑥]𝐶 = 𝑥 ↔ [𝐴 / 𝑥]𝑥 = 𝐶) → ([𝐴 / 𝑥]𝑥 = 𝐶 → [𝐴 / 𝑥]𝐶 = 𝑥)) | 
| 21 | 7, 19, 20 | e12 44744 | . . . 4
⊢ (   𝐴 ∈ 𝐵   ,   𝐶 = 𝐴   ▶   [𝐴 / 𝑥]𝐶 = 𝑥   ) | 
| 22 | 21 | in2 44625 | . . 3
⊢ (   𝐴 ∈ 𝐵   ▶   (𝐶 = 𝐴 → [𝐴 / 𝑥]𝐶 = 𝑥)   ) | 
| 23 |  | impbi 208 | . . 3
⊢
(([𝐴 / 𝑥]𝐶 = 𝑥 → 𝐶 = 𝐴) → ((𝐶 = 𝐴 → [𝐴 / 𝑥]𝐶 = 𝑥) → ([𝐴 / 𝑥]𝐶 = 𝑥 ↔ 𝐶 = 𝐴))) | 
| 24 | 15, 22, 23 | e11 44708 | . 2
⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝐶 = 𝑥 ↔ 𝐶 = 𝐴)   ) | 
| 25 | 24 | in1 44591 | 1
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 = 𝑥 ↔ 𝐶 = 𝐴)) |