Proof of Theorem eqsbc2VD
| Step | Hyp | Ref
| Expression |
| 1 | | idn1 44599 |
. . . . . . 7
⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
| 2 | | eqsbc1 3812 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝑥 = 𝐶 ↔ 𝐴 = 𝐶)) |
| 3 | 1, 2 | e1a 44652 |
. . . . . 6
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑥 = 𝐶 ↔ 𝐴 = 𝐶) ) |
| 4 | | eqcom 2742 |
. . . . . . . . . 10
⊢ (𝐶 = 𝑥 ↔ 𝑥 = 𝐶) |
| 5 | 4 | sbcbii 3822 |
. . . . . . . . 9
⊢
([𝐴 / 𝑥]𝐶 = 𝑥 ↔ [𝐴 / 𝑥]𝑥 = 𝐶) |
| 6 | 5 | a1i 11 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 = 𝑥 ↔ [𝐴 / 𝑥]𝑥 = 𝐶)) |
| 7 | 1, 6 | e1a 44652 |
. . . . . . 7
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝐶 = 𝑥 ↔ [𝐴 / 𝑥]𝑥 = 𝐶) ) |
| 8 | | idn2 44638 |
. . . . . . 7
⊢ ( 𝐴 ∈ 𝐵 , [𝐴 / 𝑥]𝐶 = 𝑥 ▶ [𝐴 / 𝑥]𝐶 = 𝑥 ) |
| 9 | | biimp 215 |
. . . . . . 7
⊢
(([𝐴 / 𝑥]𝐶 = 𝑥 ↔ [𝐴 / 𝑥]𝑥 = 𝐶) → ([𝐴 / 𝑥]𝐶 = 𝑥 → [𝐴 / 𝑥]𝑥 = 𝐶)) |
| 10 | 7, 8, 9 | e12 44748 |
. . . . . 6
⊢ ( 𝐴 ∈ 𝐵 , [𝐴 / 𝑥]𝐶 = 𝑥 ▶ [𝐴 / 𝑥]𝑥 = 𝐶 ) |
| 11 | | biimp 215 |
. . . . . 6
⊢
(([𝐴 / 𝑥]𝑥 = 𝐶 ↔ 𝐴 = 𝐶) → ([𝐴 / 𝑥]𝑥 = 𝐶 → 𝐴 = 𝐶)) |
| 12 | 3, 10, 11 | e12 44748 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐵 , [𝐴 / 𝑥]𝐶 = 𝑥 ▶ 𝐴 = 𝐶 ) |
| 13 | | eqcom 2742 |
. . . . 5
⊢ (𝐴 = 𝐶 ↔ 𝐶 = 𝐴) |
| 14 | 12, 13 | e2bi 44657 |
. . . 4
⊢ ( 𝐴 ∈ 𝐵 , [𝐴 / 𝑥]𝐶 = 𝑥 ▶ 𝐶 = 𝐴 ) |
| 15 | 14 | in2 44630 |
. . 3
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝐶 = 𝑥 → 𝐶 = 𝐴) ) |
| 16 | | idn2 44638 |
. . . . . . 7
⊢ ( 𝐴 ∈ 𝐵 , 𝐶 = 𝐴 ▶ 𝐶 = 𝐴 ) |
| 17 | 16, 13 | e2bir 44658 |
. . . . . 6
⊢ ( 𝐴 ∈ 𝐵 , 𝐶 = 𝐴 ▶ 𝐴 = 𝐶 ) |
| 18 | | biimpr 220 |
. . . . . 6
⊢
(([𝐴 / 𝑥]𝑥 = 𝐶 ↔ 𝐴 = 𝐶) → (𝐴 = 𝐶 → [𝐴 / 𝑥]𝑥 = 𝐶)) |
| 19 | 3, 17, 18 | e12 44748 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐵 , 𝐶 = 𝐴 ▶ [𝐴 / 𝑥]𝑥 = 𝐶 ) |
| 20 | | biimpr 220 |
. . . . 5
⊢
(([𝐴 / 𝑥]𝐶 = 𝑥 ↔ [𝐴 / 𝑥]𝑥 = 𝐶) → ([𝐴 / 𝑥]𝑥 = 𝐶 → [𝐴 / 𝑥]𝐶 = 𝑥)) |
| 21 | 7, 19, 20 | e12 44748 |
. . . 4
⊢ ( 𝐴 ∈ 𝐵 , 𝐶 = 𝐴 ▶ [𝐴 / 𝑥]𝐶 = 𝑥 ) |
| 22 | 21 | in2 44630 |
. . 3
⊢ ( 𝐴 ∈ 𝐵 ▶ (𝐶 = 𝐴 → [𝐴 / 𝑥]𝐶 = 𝑥) ) |
| 23 | | impbi 208 |
. . 3
⊢
(([𝐴 / 𝑥]𝐶 = 𝑥 → 𝐶 = 𝐴) → ((𝐶 = 𝐴 → [𝐴 / 𝑥]𝐶 = 𝑥) → ([𝐴 / 𝑥]𝐶 = 𝑥 ↔ 𝐶 = 𝐴))) |
| 24 | 15, 22, 23 | e11 44713 |
. 2
⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝐶 = 𝑥 ↔ 𝐶 = 𝐴) ) |
| 25 | 24 | in1 44596 |
1
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 = 𝑥 ↔ 𝐶 = 𝐴)) |