MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impbidd Structured version   Visualization version   GIF version

Theorem impbidd 209
Description: Deduce an equivalence from two implications. Double deduction associated with impbi 207 and impbii 208. Deduction associated with impbid 211. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Hypotheses
Ref Expression
impbidd.1 (𝜑 → (𝜓 → (𝜒𝜃)))
impbidd.2 (𝜑 → (𝜓 → (𝜃𝜒)))
Assertion
Ref Expression
impbidd (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem impbidd
StepHypRef Expression
1 impbidd.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 impbidd.2 . 2 (𝜑 → (𝜓 → (𝜃𝜒)))
3 impbi 207 . 2 ((𝜒𝜃) → ((𝜃𝜒) → (𝜒𝜃)))
41, 2, 3syl6c 70 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  pm5.74  269  elabgt  3603  seglecgr12  34413  prtlem18  36891
  Copyright terms: Public domain W3C validator