Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjlem18 Structured version   Visualization version   GIF version

Theorem disjlem18 38792
Description: Lemma for disjdmqseq 38797, partim2 38799 and petlem 38804 via disjlem19 38793, (general version of the former prtlem18 38870). (Contributed by Peter Mazsa, 16-Sep-2021.)
Assertion
Ref Expression
disjlem18 ((𝐴𝑉𝐵𝑊) → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝐵 ∈ [𝑥]𝑅𝐴𝑅𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊

Proof of Theorem disjlem18
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rspe 3227 . . . . . . 7 ((𝑥 ∈ dom 𝑅 ∧ (𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)) → ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅))
21expr 456 . . . . . 6 ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝐵 ∈ [𝑥]𝑅 → ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
32adantl 481 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (𝐵 ∈ [𝑥]𝑅 → ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
4 relbrcoss 38437 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (Rel 𝑅 → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅))))
5 disjrel 38722 . . . . . . 7 ( Disj 𝑅 → Rel 𝑅)
64, 5impel 505 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
76adantr 480 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
83, 7sylibrd 259 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (𝐵 ∈ [𝑥]𝑅𝐴𝑅𝐵))
98ex 412 . . 3 (((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝐵 ∈ [𝑥]𝑅𝐴𝑅𝐵)))
10 disjlem17 38791 . . . . 5 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅)))
1110adantl 481 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅)))
12 relbrcoss 38437 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (Rel 𝑅 → (𝐴𝑅𝐵 ↔ ∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅))))
1312, 5impel 505 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) → (𝐴𝑅𝐵 ↔ ∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅)))
1413imbi1d 341 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) → ((𝐴𝑅𝐵𝐵 ∈ [𝑥]𝑅) ↔ (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅)))
1511, 14sylibrd 259 . . 3 (((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝐴𝑅𝐵𝐵 ∈ [𝑥]𝑅)))
169, 15impbidd 210 . 2 (((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝐵 ∈ [𝑥]𝑅𝐴𝑅𝐵)))
1716ex 412 1 ((𝐴𝑉𝐵𝑊) → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝐵 ∈ [𝑥]𝑅𝐴𝑅𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wrex 3053   class class class wbr 5107  dom cdm 5638  Rel wrel 5643  [cec 8669  ccoss 38169   Disj wdisjALTV 38203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673  df-coss 38402  df-cnvrefrel 38518  df-disjALTV 38697
This theorem is referenced by:  disjlem19  38793
  Copyright terms: Public domain W3C validator