Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjlem18 Structured version   Visualization version   GIF version

Theorem disjlem18 37014
Description: Lemma for disjdmqseq 37019, partim2 37021 and petlem 37026 via disjlem19 37015, (general version of the former prtlem18 37091). (Contributed by Peter Mazsa, 16-Sep-2021.)
Assertion
Ref Expression
disjlem18 ((𝐴𝑉𝐵𝑊) → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝐵 ∈ [𝑥]𝑅𝐴𝑅𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊

Proof of Theorem disjlem18
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rspe 3228 . . . . . . 7 ((𝑥 ∈ dom 𝑅 ∧ (𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)) → ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅))
21expr 458 . . . . . 6 ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝐵 ∈ [𝑥]𝑅 → ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
32adantl 483 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (𝐵 ∈ [𝑥]𝑅 → ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
4 relbrcoss 36660 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (Rel 𝑅 → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅))))
5 disjrel 36944 . . . . . . 7 ( Disj 𝑅 → Rel 𝑅)
64, 5impel 507 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
76adantr 482 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (𝐴𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅𝐵 ∈ [𝑥]𝑅)))
83, 7sylibrd 259 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) ∧ (𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅)) → (𝐵 ∈ [𝑥]𝑅𝐴𝑅𝐵))
98ex 414 . . 3 (((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝐵 ∈ [𝑥]𝑅𝐴𝑅𝐵)))
10 disjlem17 37013 . . . . 5 ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅)))
1110adantl 483 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅)))
12 relbrcoss 36660 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (Rel 𝑅 → (𝐴𝑅𝐵 ↔ ∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅))))
1312, 5impel 507 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) → (𝐴𝑅𝐵 ↔ ∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅)))
1413imbi1d 342 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) → ((𝐴𝑅𝐵𝐵 ∈ [𝑥]𝑅) ↔ (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅)))
1511, 14sylibrd 259 . . 3 (((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝐴𝑅𝐵𝐵 ∈ [𝑥]𝑅)))
169, 15impbidd 209 . 2 (((𝐴𝑉𝐵𝑊) ∧ Disj 𝑅) → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝐵 ∈ [𝑥]𝑅𝐴𝑅𝐵)))
1716ex 414 1 ((𝐴𝑉𝐵𝑊) → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅𝐴 ∈ [𝑥]𝑅) → (𝐵 ∈ [𝑥]𝑅𝐴𝑅𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2104  wrex 3070   class class class wbr 5081  dom cdm 5600  Rel wrel 5605  [cec 8527  ccoss 36381   Disj wdisjALTV 36415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rmo 3331  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531  df-coss 36625  df-cnvrefrel 36741  df-disjALTV 36919
This theorem is referenced by:  disjlem19  37015
  Copyright terms: Public domain W3C validator