| Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem18 | Structured version Visualization version GIF version | ||
| Description: Lemma for prter2 39053. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| prtlem18.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
| Ref | Expression |
|---|---|
| prtlem18 | ⊢ (Prt 𝐴 → ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → (𝑤 ∈ 𝑣 ↔ 𝑧 ∼ 𝑤))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspe 3223 | . . . . 5 ⊢ ((𝑣 ∈ 𝐴 ∧ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) | |
| 2 | 1 | expr 456 | . . . 4 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → (𝑤 ∈ 𝑣 → ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 3 | prtlem18.1 | . . . . 5 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
| 4 | 3 | prtlem13 39040 | . . . 4 ⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
| 5 | 2, 4 | imbitrrdi 252 | . . 3 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → (𝑤 ∈ 𝑣 → 𝑧 ∼ 𝑤)) |
| 6 | 5 | a1i 11 | . 2 ⊢ (Prt 𝐴 → ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → (𝑤 ∈ 𝑣 → 𝑧 ∼ 𝑤))) |
| 7 | 3 | prtlem13 39040 | . . 3 ⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑝 ∈ 𝐴 (𝑧 ∈ 𝑝 ∧ 𝑤 ∈ 𝑝)) |
| 8 | prtlem17 39048 | . . 3 ⊢ (Prt 𝐴 → ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → (∃𝑝 ∈ 𝐴 (𝑧 ∈ 𝑝 ∧ 𝑤 ∈ 𝑝) → 𝑤 ∈ 𝑣))) | |
| 9 | 7, 8 | syl7bi 255 | . 2 ⊢ (Prt 𝐴 → ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → (𝑧 ∼ 𝑤 → 𝑤 ∈ 𝑣))) |
| 10 | 6, 9 | impbidd 210 | 1 ⊢ (Prt 𝐴 → ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → (𝑤 ∈ 𝑣 ↔ 𝑧 ∼ 𝑤))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5095 {copab 5157 Prt wprt 39043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-prt 39044 |
| This theorem is referenced by: prtlem19 39050 |
| Copyright terms: Public domain | W3C validator |