Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem18 Structured version   Visualization version   GIF version

Theorem prtlem18 38862
Description: Lemma for prter2 38866. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem18.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prtlem18 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → (𝑤𝑣𝑧 𝑤)))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑥,𝑦,𝑧,𝐴   𝑣, ,𝑤,𝑧
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prtlem18
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 rspe 3229 . . . . 5 ((𝑣𝐴 ∧ (𝑧𝑣𝑤𝑣)) → ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
21expr 456 . . . 4 ((𝑣𝐴𝑧𝑣) → (𝑤𝑣 → ∃𝑣𝐴 (𝑧𝑣𝑤𝑣)))
3 prtlem18.1 . . . . 5 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
43prtlem13 38853 . . . 4 (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
52, 4imbitrrdi 252 . . 3 ((𝑣𝐴𝑧𝑣) → (𝑤𝑣𝑧 𝑤))
65a1i 11 . 2 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → (𝑤𝑣𝑧 𝑤)))
73prtlem13 38853 . . 3 (𝑧 𝑤 ↔ ∃𝑝𝐴 (𝑧𝑝𝑤𝑝))
8 prtlem17 38861 . . 3 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → (∃𝑝𝐴 (𝑧𝑝𝑤𝑝) → 𝑤𝑣)))
97, 8syl7bi 255 . 2 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → (𝑧 𝑤𝑤𝑣)))
106, 9impbidd 210 1 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → (𝑤𝑣𝑧 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3055   class class class wbr 5115  {copab 5177  Prt wprt 38856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-prt 38857
This theorem is referenced by:  prtlem19  38863
  Copyright terms: Public domain W3C validator