Proof of Theorem elabgtOLD
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elab6g 3669 | . . 3
⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | 
| 2 | 1 | adantr 480 | . 2
⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | 
| 3 |  | elisset 2823 | . . . 4
⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | 
| 4 |  | biimp 215 | . . . . . . . . 9
⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | 
| 5 | 4 | imim3i 64 | . . . . . . . 8
⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ((𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜓))) | 
| 6 | 5 | al2imi 1815 | . . . . . . 7
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → ∀𝑥(𝑥 = 𝐴 → 𝜓))) | 
| 7 |  | 19.23v 1942 | . . . . . . 7
⊢
(∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | 
| 8 | 6, 7 | imbitrdi 251 | . . . . . 6
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → (∃𝑥 𝑥 = 𝐴 → 𝜓))) | 
| 9 | 8 | com3r 87 | . . . . 5
⊢
(∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → 𝜓))) | 
| 10 |  | biimpr 220 | . . . . . . . . 9
⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | 
| 11 | 10 | imim2i 16 | . . . . . . . 8
⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝑥 = 𝐴 → (𝜓 → 𝜑))) | 
| 12 | 11 | alimi 1811 | . . . . . . 7
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜑))) | 
| 13 |  | bi2.04 387 | . . . . . . . . 9
⊢ ((𝑥 = 𝐴 → (𝜓 → 𝜑)) ↔ (𝜓 → (𝑥 = 𝐴 → 𝜑))) | 
| 14 | 13 | albii 1819 | . . . . . . . 8
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜑)) ↔ ∀𝑥(𝜓 → (𝑥 = 𝐴 → 𝜑))) | 
| 15 |  | 19.21v 1939 | . . . . . . . 8
⊢
(∀𝑥(𝜓 → (𝑥 = 𝐴 → 𝜑)) ↔ (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) | 
| 16 | 14, 15 | sylbb 219 | . . . . . . 7
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜑)) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) | 
| 17 | 12, 16 | syl 17 | . . . . . 6
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) | 
| 18 | 17 | a1i 11 | . . . . 5
⊢
(∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑)))) | 
| 19 | 9, 18 | impbidd 210 | . . . 4
⊢
(∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓))) | 
| 20 | 3, 19 | syl 17 | . . 3
⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓))) | 
| 21 | 20 | imp 406 | . 2
⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | 
| 22 | 2, 21 | bitrd 279 | 1
⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |