MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabgtOLD Structured version   Visualization version   GIF version

Theorem elabgtOLD 3597
Description: Obsolete version of elabgt 3596 as of 12-Oct-2024. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elabgtOLD ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elabgtOLD
StepHypRef Expression
1 nfcv 2906 . . 3 𝑥𝐴
2 nfab1 2908 . . . . 5 𝑥{𝑥𝜑}
32nfel2 2924 . . . 4 𝑥 𝐴 ∈ {𝑥𝜑}
4 nfv 1918 . . . 4 𝑥𝜓
53, 4nfbi 1907 . . 3 𝑥(𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
6 pm5.5 361 . . 3 (𝑥 = 𝐴 → ((𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)) ↔ (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
71, 5, 6spcgf 3520 . 2 (𝐴𝐵 → (∀𝑥(𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
8 abid 2719 . . . . . . 7 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
9 eleq1 2826 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜑}))
108, 9bitr3id 284 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝐴 ∈ {𝑥𝜑}))
1110bibi1d 343 . . . . 5 (𝑥 = 𝐴 → ((𝜑𝜓) ↔ (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
1211biimpd 228 . . . 4 (𝑥 = 𝐴 → ((𝜑𝜓) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
1312a2i 14 . . 3 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
1413alimi 1815 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
157, 14impel 505 1 ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator