MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabgtOLD Structured version   Visualization version   GIF version

Theorem elabgtOLD 3655
Description: Obsolete version of elabgt 3654 as of 12-Oct-2024. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elabgtOLD ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elabgtOLD
StepHypRef Expression
1 nfcv 2895 . . 3 𝑥𝐴
2 nfab1 2897 . . . . 5 𝑥{𝑥𝜑}
32nfel2 2913 . . . 4 𝑥 𝐴 ∈ {𝑥𝜑}
4 nfv 1909 . . . 4 𝑥𝜓
53, 4nfbi 1898 . . 3 𝑥(𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
6 pm5.5 361 . . 3 (𝑥 = 𝐴 → ((𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)) ↔ (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
71, 5, 6spcgf 3573 . 2 (𝐴𝐵 → (∀𝑥(𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
8 abid 2705 . . . . . . 7 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
9 eleq1 2813 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜑}))
108, 9bitr3id 285 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝐴 ∈ {𝑥𝜑}))
1110bibi1d 343 . . . . 5 (𝑥 = 𝐴 → ((𝜑𝜓) ↔ (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
1211biimpd 228 . . . 4 (𝑥 = 𝐴 → ((𝜑𝜓) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
1312a2i 14 . . 3 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
1413alimi 1805 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
157, 14impel 505 1 ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  wcel 2098  {cab 2701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-v 3468
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator