![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clelab | Structured version Visualization version GIF version |
Description: Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
Ref | Expression |
---|---|
clelab | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2848 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
2 | nfv 1873 | . . 3 ⊢ Ⅎ𝑦(𝑥 = 𝐴 ∧ 𝜑) | |
3 | nfv 1873 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 | |
4 | nfsab1 2768 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
5 | 3, 4 | nfan 1862 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
6 | eqeq1 2783 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
7 | sbequ12 2179 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
8 | df-clab 2760 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
9 | 7, 8 | syl6bbr 281 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑})) |
10 | 6, 9 | anbi12d 621 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝐴 ∧ 𝜑) ↔ (𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑}))) |
11 | 2, 5, 10 | cbvexv1 2278 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑥 ∣ 𝜑})) |
12 | 1, 11 | bitr4i 270 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 = wceq 1507 ∃wex 1742 [wsb 2015 ∈ wcel 2050 {cab 2759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2751 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2760 df-cleq 2772 df-clel 2847 |
This theorem is referenced by: elrabi 3591 bj-csbsnlem 33709 frege55c 39624 spr0nelg 43004 |
Copyright terms: Public domain | W3C validator |