Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clelab | Structured version Visualization version GIF version |
Description: Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) Avoid ax-11 2154, see sbc5ALT 3745 for more details. (Revised by SN, 2-Sep-2024.) |
Ref | Expression |
---|---|
clelab | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2820 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → ∃𝑦 𝑦 = 𝐴) | |
2 | exsimpl 1871 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → ∃𝑥 𝑥 = 𝐴) | |
3 | eqeq1 2742 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
4 | 3 | cbvexvw 2040 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴) |
5 | 2, 4 | sylib 217 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → ∃𝑦 𝑦 = 𝐴) |
6 | df-clab 2716 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
7 | sb5 2268 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
8 | 6, 7 | bitri 274 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
9 | eleq1 2826 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
10 | eqeq2 2750 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
11 | 10 | anbi1d 630 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝜑))) |
12 | 11 | exbidv 1924 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
13 | 9, 12 | bibi12d 346 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)))) |
14 | 8, 13 | mpbii 232 | . . 3 ⊢ (𝑦 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
15 | 14 | exlimiv 1933 | . 2 ⊢ (∃𝑦 𝑦 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
16 | 1, 5, 15 | pm5.21nii 380 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 [wsb 2067 ∈ wcel 2106 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: elrabiOLD 3619 sbc5 3744 bj-csbsnlem 35088 frege55c 41526 spr0nelg 44928 |
Copyright terms: Public domain | W3C validator |