![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clelab | Structured version Visualization version GIF version |
Description: Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) Avoid ax-11 2155, see sbc5ALT 3820 for more details. (Revised by SN, 2-Sep-2024.) |
Ref | Expression |
---|---|
clelab | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elissetv 2820 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → ∃𝑦 𝑦 = 𝐴) | |
2 | exsimpl 1866 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → ∃𝑥 𝑥 = 𝐴) | |
3 | iseqsetv-cleq 2804 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴) | |
4 | 2, 3 | sylib 218 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → ∃𝑦 𝑦 = 𝐴) |
5 | eleq1 2827 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
6 | df-clab 2713 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
7 | sb5 2274 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
8 | 6, 7 | bitri 275 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
9 | eqeq2 2747 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
10 | 9 | anbi1d 631 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝜑))) |
11 | 10 | exbidv 1919 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
12 | 8, 11 | bitrid 283 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
13 | 5, 12 | bitr3d 281 | . . 3 ⊢ (𝑦 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
14 | 13 | exlimiv 1928 | . 2 ⊢ (∃𝑦 𝑦 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
15 | 1, 4, 14 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 [wsb 2062 ∈ wcel 2106 {cab 2712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 |
This theorem is referenced by: sbc5 3819 bj-csbsnlem 36886 frege55c 43908 spr0nelg 47401 |
Copyright terms: Public domain | W3C validator |