| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trelded | Structured version Visualization version GIF version | ||
| Description: Deduction form of trel 5226. In a transitive class, the membership relation is transitive. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| trelded.1 | ⊢ (𝜑 → Tr 𝐴) |
| trelded.2 | ⊢ (𝜓 → 𝐵 ∈ 𝐶) |
| trelded.3 | ⊢ (𝜒 → 𝐶 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| trelded | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trelded.1 | . 2 ⊢ (𝜑 → Tr 𝐴) | |
| 2 | trelded.2 | . 2 ⊢ (𝜓 → 𝐵 ∈ 𝐶) | |
| 3 | trelded.3 | . 2 ⊢ (𝜒 → 𝐶 ∈ 𝐴) | |
| 4 | trel 5226 | . . 3 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | |
| 5 | 4 | 3impib 1116 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
| 6 | 1, 2, 3, 5 | syl3an 1160 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝐵 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 Tr wtr 5217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-uni 4875 df-tr 5218 |
| This theorem is referenced by: suctrALT3 44920 |
| Copyright terms: Public domain | W3C validator |