| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trelded | Structured version Visualization version GIF version | ||
| Description: Deduction form of trel 5204. In a transitive class, the membership relation is transitive. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| trelded.1 | ⊢ (𝜑 → Tr 𝐴) |
| trelded.2 | ⊢ (𝜓 → 𝐵 ∈ 𝐶) |
| trelded.3 | ⊢ (𝜒 → 𝐶 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| trelded | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trelded.1 | . 2 ⊢ (𝜑 → Tr 𝐴) | |
| 2 | trelded.2 | . 2 ⊢ (𝜓 → 𝐵 ∈ 𝐶) | |
| 3 | trelded.3 | . 2 ⊢ (𝜒 → 𝐶 ∈ 𝐴) | |
| 4 | trel 5204 | . . 3 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | |
| 5 | 4 | 3impib 1116 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
| 6 | 1, 2, 3, 5 | syl3an 1160 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝐵 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 Tr wtr 5196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-uni 4857 df-tr 5197 |
| This theorem is referenced by: suctrALT3 45026 |
| Copyright terms: Public domain | W3C validator |