| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1137 | . . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝐴) | 
| 2 |  | simp2 1138 | . . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝐴) | 
| 3 |  | fvconst 7184 | . . . . . . . 8
⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐵) | 
| 4 | 1, 3 | sylan2 593 | . . . . . . 7
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑋) = 𝐵) | 
| 5 |  | fvconst 7184 | . . . . . . . 8
⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑌 ∈ 𝐴) → (𝐹‘𝑌) = 𝐵) | 
| 6 | 2, 5 | sylan2 593 | . . . . . . 7
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑌) = 𝐵) | 
| 7 | 4, 6 | eqtr4d 2780 | . . . . . 6
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑋) = (𝐹‘𝑌)) | 
| 8 |  | neneq 2946 | . . . . . . . 8
⊢ (𝑋 ≠ 𝑌 → ¬ 𝑋 = 𝑌) | 
| 9 | 8 | 3ad2ant3 1136 | . . . . . . 7
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌) → ¬ 𝑋 = 𝑌) | 
| 10 | 9 | adantl 481 | . . . . . 6
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝑋 = 𝑌) | 
| 11 | 7, 10 | jcnd 163 | . . . . 5
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) | 
| 12 |  | fveqeq2 6915 | . . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝐹‘𝑋) = (𝐹‘𝑦))) | 
| 13 |  | eqeq1 2741 | . . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑥 = 𝑦 ↔ 𝑋 = 𝑦)) | 
| 14 | 12, 13 | imbi12d 344 | . . . . . . 7
⊢ (𝑥 = 𝑋 → (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦))) | 
| 15 | 14 | notbid 318 | . . . . . 6
⊢ (𝑥 = 𝑋 → (¬ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦))) | 
| 16 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | 
| 17 | 16 | eqeq2d 2748 | . . . . . . . 8
⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) = (𝐹‘𝑦) ↔ (𝐹‘𝑋) = (𝐹‘𝑌))) | 
| 18 |  | eqeq2 2749 | . . . . . . . 8
⊢ (𝑦 = 𝑌 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑌)) | 
| 19 | 17, 18 | imbi12d 344 | . . . . . . 7
⊢ (𝑦 = 𝑌 → (((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦) ↔ ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) | 
| 20 | 19 | notbid 318 | . . . . . 6
⊢ (𝑦 = 𝑌 → (¬ ((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦) ↔ ¬ ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) | 
| 21 | 15, 20 | rspc2ev 3635 | . . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ ¬ ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | 
| 22 | 1, 2, 11, 21 | syl2an23an 1425 | . . . 4
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | 
| 23 |  | rexnal2 3135 | . . . 4
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | 
| 24 | 22, 23 | sylib 218 | . . 3
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | 
| 25 | 24 | olcd 875 | . 2
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (¬ 𝐹:𝐴⟶𝐶 ∨ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | 
| 26 |  | ianor 984 | . . 3
⊢ (¬
(𝐹:𝐴⟶𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) ↔ (¬ 𝐹:𝐴⟶𝐶 ∨ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | 
| 27 |  | dff13 7275 | . . 3
⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | 
| 28 | 26, 27 | xchnxbir 333 | . 2
⊢ (¬
𝐹:𝐴–1-1→𝐶 ↔ (¬ 𝐹:𝐴⟶𝐶 ∨ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | 
| 29 | 25, 28 | sylibr 234 | 1
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1→𝐶) |