MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf1const Structured version   Visualization version   GIF version

Theorem nf1const 7310
Description: A constant function from at least two elements is not one-to-one. (Contributed by AV, 30-Mar-2024.)
Assertion
Ref Expression
nf1const ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ¬ 𝐹:𝐴1-1𝐶)

Proof of Theorem nf1const
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . . 5 ((𝑋𝐴𝑌𝐴𝑋𝑌) → 𝑋𝐴)
2 simp2 1134 . . . . 5 ((𝑋𝐴𝑌𝐴𝑋𝑌) → 𝑌𝐴)
3 fvconst 7171 . . . . . . . 8 ((𝐹:𝐴⟶{𝐵} ∧ 𝑋𝐴) → (𝐹𝑋) = 𝐵)
41, 3sylan2 591 . . . . . . 7 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → (𝐹𝑋) = 𝐵)
5 fvconst 7171 . . . . . . . 8 ((𝐹:𝐴⟶{𝐵} ∧ 𝑌𝐴) → (𝐹𝑌) = 𝐵)
62, 5sylan2 591 . . . . . . 7 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → (𝐹𝑌) = 𝐵)
74, 6eqtr4d 2768 . . . . . 6 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → (𝐹𝑋) = (𝐹𝑌))
8 neneq 2936 . . . . . . . 8 (𝑋𝑌 → ¬ 𝑋 = 𝑌)
983ad2ant3 1132 . . . . . . 7 ((𝑋𝐴𝑌𝐴𝑋𝑌) → ¬ 𝑋 = 𝑌)
109adantl 480 . . . . . 6 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ¬ 𝑋 = 𝑌)
117, 10jcnd 163 . . . . 5 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ¬ ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))
12 fveqeq2 6903 . . . . . . . 8 (𝑥 = 𝑋 → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑋) = (𝐹𝑦)))
13 eqeq1 2729 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
1412, 13imbi12d 343 . . . . . . 7 (𝑥 = 𝑋 → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ((𝐹𝑋) = (𝐹𝑦) → 𝑋 = 𝑦)))
1514notbid 317 . . . . . 6 (𝑥 = 𝑋 → (¬ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹𝑋) = (𝐹𝑦) → 𝑋 = 𝑦)))
16 fveq2 6894 . . . . . . . . 9 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
1716eqeq2d 2736 . . . . . . . 8 (𝑦 = 𝑌 → ((𝐹𝑋) = (𝐹𝑦) ↔ (𝐹𝑋) = (𝐹𝑌)))
18 eqeq2 2737 . . . . . . . 8 (𝑦 = 𝑌 → (𝑋 = 𝑦𝑋 = 𝑌))
1917, 18imbi12d 343 . . . . . . 7 (𝑦 = 𝑌 → (((𝐹𝑋) = (𝐹𝑦) → 𝑋 = 𝑦) ↔ ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
2019notbid 317 . . . . . 6 (𝑦 = 𝑌 → (¬ ((𝐹𝑋) = (𝐹𝑦) → 𝑋 = 𝑦) ↔ ¬ ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
2115, 20rspc2ev 3620 . . . . 5 ((𝑋𝐴𝑌𝐴 ∧ ¬ ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)) → ∃𝑥𝐴𝑦𝐴 ¬ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
221, 2, 11, 21syl2an23an 1420 . . . 4 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ∃𝑥𝐴𝑦𝐴 ¬ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
23 rexnal2 3125 . . . 4 (∃𝑥𝐴𝑦𝐴 ¬ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
2422, 23sylib 217 . . 3 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ¬ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
2524olcd 872 . 2 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → (¬ 𝐹:𝐴𝐶 ∨ ¬ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
26 ianor 979 . . 3 (¬ (𝐹:𝐴𝐶 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ (¬ 𝐹:𝐴𝐶 ∨ ¬ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
27 dff13 7263 . . 3 (𝐹:𝐴1-1𝐶 ↔ (𝐹:𝐴𝐶 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
2826, 27xchnxbir 332 . 2 𝐹:𝐴1-1𝐶 ↔ (¬ 𝐹:𝐴𝐶 ∨ ¬ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
2925, 28sylibr 233 1 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ¬ 𝐹:𝐴1-1𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2930  wral 3051  wrex 3060  {csn 4629  wf 6543  1-1wf1 6544  cfv 6547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fv 6555
This theorem is referenced by:  nf1oconst  7311
  Copyright terms: Public domain W3C validator