MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf1const Structured version   Visualization version   GIF version

Theorem nf1const 7208
Description: A constant function from at least two elements is not one-to-one. (Contributed by AV, 30-Mar-2024.)
Assertion
Ref Expression
nf1const ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ¬ 𝐹:𝐴1-1𝐶)

Proof of Theorem nf1const
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝑋𝐴𝑌𝐴𝑋𝑌) → 𝑋𝐴)
2 simp2 1137 . . . . 5 ((𝑋𝐴𝑌𝐴𝑋𝑌) → 𝑌𝐴)
3 fvconst 7068 . . . . . . . 8 ((𝐹:𝐴⟶{𝐵} ∧ 𝑋𝐴) → (𝐹𝑋) = 𝐵)
41, 3sylan2 594 . . . . . . 7 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → (𝐹𝑋) = 𝐵)
5 fvconst 7068 . . . . . . . 8 ((𝐹:𝐴⟶{𝐵} ∧ 𝑌𝐴) → (𝐹𝑌) = 𝐵)
62, 5sylan2 594 . . . . . . 7 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → (𝐹𝑌) = 𝐵)
74, 6eqtr4d 2779 . . . . . 6 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → (𝐹𝑋) = (𝐹𝑌))
8 neneq 2947 . . . . . . . 8 (𝑋𝑌 → ¬ 𝑋 = 𝑌)
983ad2ant3 1135 . . . . . . 7 ((𝑋𝐴𝑌𝐴𝑋𝑌) → ¬ 𝑋 = 𝑌)
109adantl 483 . . . . . 6 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ¬ 𝑋 = 𝑌)
117, 10jcnd 163 . . . . 5 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ¬ ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))
12 fveqeq2 6813 . . . . . . . 8 (𝑥 = 𝑋 → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑋) = (𝐹𝑦)))
13 eqeq1 2740 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
1412, 13imbi12d 345 . . . . . . 7 (𝑥 = 𝑋 → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ((𝐹𝑋) = (𝐹𝑦) → 𝑋 = 𝑦)))
1514notbid 318 . . . . . 6 (𝑥 = 𝑋 → (¬ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹𝑋) = (𝐹𝑦) → 𝑋 = 𝑦)))
16 fveq2 6804 . . . . . . . . 9 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
1716eqeq2d 2747 . . . . . . . 8 (𝑦 = 𝑌 → ((𝐹𝑋) = (𝐹𝑦) ↔ (𝐹𝑋) = (𝐹𝑌)))
18 eqeq2 2748 . . . . . . . 8 (𝑦 = 𝑌 → (𝑋 = 𝑦𝑋 = 𝑌))
1917, 18imbi12d 345 . . . . . . 7 (𝑦 = 𝑌 → (((𝐹𝑋) = (𝐹𝑦) → 𝑋 = 𝑦) ↔ ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
2019notbid 318 . . . . . 6 (𝑦 = 𝑌 → (¬ ((𝐹𝑋) = (𝐹𝑦) → 𝑋 = 𝑦) ↔ ¬ ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
2115, 20rspc2ev 3577 . . . . 5 ((𝑋𝐴𝑌𝐴 ∧ ¬ ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)) → ∃𝑥𝐴𝑦𝐴 ¬ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
221, 2, 11, 21syl2an23an 1423 . . . 4 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ∃𝑥𝐴𝑦𝐴 ¬ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
23 rexnal2 3129 . . . 4 (∃𝑥𝐴𝑦𝐴 ¬ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
2422, 23sylib 217 . . 3 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ¬ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
2524olcd 872 . 2 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → (¬ 𝐹:𝐴𝐶 ∨ ¬ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
26 ianor 980 . . 3 (¬ (𝐹:𝐴𝐶 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ (¬ 𝐹:𝐴𝐶 ∨ ¬ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
27 dff13 7160 . . 3 (𝐹:𝐴1-1𝐶 ↔ (𝐹:𝐴𝐶 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
2826, 27xchnxbir 333 . 2 𝐹:𝐴1-1𝐶 ↔ (¬ 𝐹:𝐴𝐶 ∨ ¬ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
2925, 28sylibr 233 1 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ¬ 𝐹:𝐴1-1𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 845  w3a 1087   = wceq 1539  wcel 2104  wne 2941  wral 3062  wrex 3071  {csn 4565  wf 6454  1-1wf1 6455  cfv 6458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fv 6466
This theorem is referenced by:  nf1oconst  7209
  Copyright terms: Public domain W3C validator