| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝐴) |
| 2 | | simp2 1137 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝐴) |
| 3 | | fvconst 7159 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐵) |
| 4 | 1, 3 | sylan2 593 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑋) = 𝐵) |
| 5 | | fvconst 7159 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑌 ∈ 𝐴) → (𝐹‘𝑌) = 𝐵) |
| 6 | 2, 5 | sylan2 593 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑌) = 𝐵) |
| 7 | 4, 6 | eqtr4d 2774 |
. . . . . 6
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (𝐹‘𝑋) = (𝐹‘𝑌)) |
| 8 | | neneq 2939 |
. . . . . . . 8
⊢ (𝑋 ≠ 𝑌 → ¬ 𝑋 = 𝑌) |
| 9 | 8 | 3ad2ant3 1135 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌) → ¬ 𝑋 = 𝑌) |
| 10 | 9 | adantl 481 |
. . . . . 6
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝑋 = 𝑌) |
| 11 | 7, 10 | jcnd 163 |
. . . . 5
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) |
| 12 | | fveqeq2 6890 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝐹‘𝑋) = (𝐹‘𝑦))) |
| 13 | | eqeq1 2740 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑥 = 𝑦 ↔ 𝑋 = 𝑦)) |
| 14 | 12, 13 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦))) |
| 15 | 14 | notbid 318 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (¬ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦))) |
| 16 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) |
| 17 | 16 | eqeq2d 2747 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) = (𝐹‘𝑦) ↔ (𝐹‘𝑋) = (𝐹‘𝑌))) |
| 18 | | eqeq2 2748 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑌)) |
| 19 | 17, 18 | imbi12d 344 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦) ↔ ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
| 20 | 19 | notbid 318 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (¬ ((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦) ↔ ¬ ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
| 21 | 15, 20 | rspc2ev 3619 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ ¬ ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 22 | 1, 2, 11, 21 | syl2an23an 1425 |
. . . 4
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 23 | | rexnal2 3123 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 24 | 22, 23 | sylib 218 |
. . 3
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 25 | 24 | olcd 874 |
. 2
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (¬ 𝐹:𝐴⟶𝐶 ∨ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 26 | | ianor 983 |
. . 3
⊢ (¬
(𝐹:𝐴⟶𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) ↔ (¬ 𝐹:𝐴⟶𝐶 ∨ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 27 | | dff13 7252 |
. . 3
⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 28 | 26, 27 | xchnxbir 333 |
. 2
⊢ (¬
𝐹:𝐴–1-1→𝐶 ↔ (¬ 𝐹:𝐴⟶𝐶 ∨ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 29 | 25, 28 | sylibr 234 |
1
⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1→𝐶) |