Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpmulg Structured version   Visualization version   GIF version

Theorem relexpmulg 41318
Description: With ordered exponents, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
relexpmulg (((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) ∧ (𝐽 ∈ ℕ0𝐾 ∈ ℕ0)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))

Proof of Theorem relexpmulg
StepHypRef Expression
1 elnn0 12235 . . . 4 (𝐽 ∈ ℕ0 ↔ (𝐽 ∈ ℕ ∨ 𝐽 = 0))
2 elnn0 12235 . . . . . 6 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
3 relexpmulnn 41317 . . . . . . . . . 10 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
433adantl3 1167 . . . . . . . . 9 (((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
54expcom 414 . . . . . . . 8 ((𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
65expcom 414 . . . . . . 7 (𝐾 ∈ ℕ → (𝐽 ∈ ℕ → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
7 simprr 770 . . . . . . . . . . . . 13 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐼 = (𝐽 · 𝐾))
8 simpll 764 . . . . . . . . . . . . . 14 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐾 = 0)
98oveq2d 7291 . . . . . . . . . . . . 13 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → (𝐽 · 𝐾) = (𝐽 · 0))
10 simplr 766 . . . . . . . . . . . . . . 15 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐽 ∈ ℕ)
1110nncnd 11989 . . . . . . . . . . . . . 14 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐽 ∈ ℂ)
1211mul01d 11174 . . . . . . . . . . . . 13 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → (𝐽 · 0) = 0)
137, 9, 123eqtrd 2782 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐼 = 0)
14 simpl 483 . . . . . . . . . . . . 13 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → (𝐾 = 0 ∧ 𝐽 ∈ ℕ))
15 nnnle0 12006 . . . . . . . . . . . . . . 15 (𝐽 ∈ ℕ → ¬ 𝐽 ≤ 0)
1615adantl 482 . . . . . . . . . . . . . 14 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → ¬ 𝐽 ≤ 0)
17 simpl 483 . . . . . . . . . . . . . . 15 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → 𝐾 = 0)
1817breq2d 5086 . . . . . . . . . . . . . 14 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → (𝐽𝐾𝐽 ≤ 0))
1916, 18mtbird 325 . . . . . . . . . . . . 13 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → ¬ 𝐽𝐾)
2014, 19syl 17 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → ¬ 𝐽𝐾)
2113, 20jcnd 163 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → ¬ (𝐼 = 0 → 𝐽𝐾))
2221pm2.21d 121 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → ((𝐼 = 0 → 𝐽𝐾) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
2322exp32 421 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → (𝑅𝑉 → (𝐼 = (𝐽 · 𝐾) → ((𝐼 = 0 → 𝐽𝐾) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))))
24233impd 1347 . . . . . . . 8 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
2524ex 413 . . . . . . 7 (𝐾 = 0 → (𝐽 ∈ ℕ → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
266, 25jaoi 854 . . . . . 6 ((𝐾 ∈ ℕ ∨ 𝐾 = 0) → (𝐽 ∈ ℕ → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
272, 26sylbi 216 . . . . 5 (𝐾 ∈ ℕ0 → (𝐽 ∈ ℕ → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
28 simplr 766 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐽 = 0)
2928oveq2d 7291 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝑅𝑟𝐽) = (𝑅𝑟0))
30 simpr1 1193 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝑅𝑉)
31 relexp0g 14733 . . . . . . . . . . 11 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3230, 31syl 17 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3329, 32eqtrd 2778 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝑅𝑟𝐽) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3433oveq1d 7290 . . . . . . . 8 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟𝐾))
35 dmexg 7750 . . . . . . . . . . 11 (𝑅𝑉 → dom 𝑅 ∈ V)
36 rnexg 7751 . . . . . . . . . . 11 (𝑅𝑉 → ran 𝑅 ∈ V)
37 unexg 7599 . . . . . . . . . . 11 ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
3835, 36, 37syl2anc 584 . . . . . . . . . 10 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
3930, 38syl 17 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
40 simpll 764 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐾 ∈ ℕ0)
41 relexpiidm 41312 . . . . . . . . 9 (((dom 𝑅 ∪ ran 𝑅) ∈ V ∧ 𝐾 ∈ ℕ0) → (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟𝐾) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
4239, 40, 41syl2anc 584 . . . . . . . 8 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟𝐾) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
43 simpr2 1194 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐼 = (𝐽 · 𝐾))
4428oveq1d 7290 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝐽 · 𝐾) = (0 · 𝐾))
4540nn0cnd 12295 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐾 ∈ ℂ)
4645mul02d 11173 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (0 · 𝐾) = 0)
4743, 44, 463eqtrd 2782 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐼 = 0)
4847oveq2d 7291 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝑅𝑟𝐼) = (𝑅𝑟0))
4948, 32eqtr2d 2779 . . . . . . . 8 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝐼))
5034, 42, 493eqtrd 2782 . . . . . . 7 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
5150ex 413 . . . . . 6 ((𝐾 ∈ ℕ0𝐽 = 0) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
5251ex 413 . . . . 5 (𝐾 ∈ ℕ0 → (𝐽 = 0 → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
5327, 52jaod 856 . . . 4 (𝐾 ∈ ℕ0 → ((𝐽 ∈ ℕ ∨ 𝐽 = 0) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
541, 53syl5bi 241 . . 3 (𝐾 ∈ ℕ0 → (𝐽 ∈ ℕ0 → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
5554impcom 408 . 2 ((𝐽 ∈ ℕ0𝐾 ∈ ℕ0) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
5655impcom 408 1 (((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) ∧ (𝐽 ∈ ℕ0𝐾 ∈ ℕ0)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885   class class class wbr 5074   I cid 5488  dom cdm 5589  ran crn 5590  cres 5591  (class class class)co 7275  0cc0 10871   · cmul 10876  cle 11010  cn 11973  0cn0 12233  𝑟crelexp 14730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-relexp 14731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator