Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpmulg Structured version   Visualization version   GIF version

Theorem relexpmulg 41972
Description: With ordered exponents, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
relexpmulg (((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) ∧ (𝐽 ∈ ℕ0𝐾 ∈ ℕ0)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))

Proof of Theorem relexpmulg
StepHypRef Expression
1 elnn0 12415 . . . 4 (𝐽 ∈ ℕ0 ↔ (𝐽 ∈ ℕ ∨ 𝐽 = 0))
2 elnn0 12415 . . . . . 6 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
3 relexpmulnn 41971 . . . . . . . . . 10 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
433adantl3 1168 . . . . . . . . 9 (((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
54expcom 414 . . . . . . . 8 ((𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
65expcom 414 . . . . . . 7 (𝐾 ∈ ℕ → (𝐽 ∈ ℕ → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
7 simprr 771 . . . . . . . . . . . . 13 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐼 = (𝐽 · 𝐾))
8 simpll 765 . . . . . . . . . . . . . 14 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐾 = 0)
98oveq2d 7373 . . . . . . . . . . . . 13 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → (𝐽 · 𝐾) = (𝐽 · 0))
10 simplr 767 . . . . . . . . . . . . . . 15 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐽 ∈ ℕ)
1110nncnd 12169 . . . . . . . . . . . . . 14 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐽 ∈ ℂ)
1211mul01d 11354 . . . . . . . . . . . . 13 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → (𝐽 · 0) = 0)
137, 9, 123eqtrd 2780 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐼 = 0)
14 simpl 483 . . . . . . . . . . . . 13 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → (𝐾 = 0 ∧ 𝐽 ∈ ℕ))
15 nnnle0 12186 . . . . . . . . . . . . . . 15 (𝐽 ∈ ℕ → ¬ 𝐽 ≤ 0)
1615adantl 482 . . . . . . . . . . . . . 14 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → ¬ 𝐽 ≤ 0)
17 simpl 483 . . . . . . . . . . . . . . 15 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → 𝐾 = 0)
1817breq2d 5117 . . . . . . . . . . . . . 14 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → (𝐽𝐾𝐽 ≤ 0))
1916, 18mtbird 324 . . . . . . . . . . . . 13 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → ¬ 𝐽𝐾)
2014, 19syl 17 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → ¬ 𝐽𝐾)
2113, 20jcnd 163 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → ¬ (𝐼 = 0 → 𝐽𝐾))
2221pm2.21d 121 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → ((𝐼 = 0 → 𝐽𝐾) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
2322exp32 421 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → (𝑅𝑉 → (𝐼 = (𝐽 · 𝐾) → ((𝐼 = 0 → 𝐽𝐾) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))))
24233impd 1348 . . . . . . . 8 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
2524ex 413 . . . . . . 7 (𝐾 = 0 → (𝐽 ∈ ℕ → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
266, 25jaoi 855 . . . . . 6 ((𝐾 ∈ ℕ ∨ 𝐾 = 0) → (𝐽 ∈ ℕ → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
272, 26sylbi 216 . . . . 5 (𝐾 ∈ ℕ0 → (𝐽 ∈ ℕ → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
28 simplr 767 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐽 = 0)
2928oveq2d 7373 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝑅𝑟𝐽) = (𝑅𝑟0))
30 simpr1 1194 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝑅𝑉)
31 relexp0g 14907 . . . . . . . . . . 11 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3230, 31syl 17 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3329, 32eqtrd 2776 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝑅𝑟𝐽) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3433oveq1d 7372 . . . . . . . 8 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟𝐾))
35 dmexg 7840 . . . . . . . . . . 11 (𝑅𝑉 → dom 𝑅 ∈ V)
36 rnexg 7841 . . . . . . . . . . 11 (𝑅𝑉 → ran 𝑅 ∈ V)
3735, 36unexd 7688 . . . . . . . . . 10 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
3830, 37syl 17 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
39 simpll 765 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐾 ∈ ℕ0)
40 relexpiidm 41966 . . . . . . . . 9 (((dom 𝑅 ∪ ran 𝑅) ∈ V ∧ 𝐾 ∈ ℕ0) → (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟𝐾) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
4138, 39, 40syl2anc 584 . . . . . . . 8 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟𝐾) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
42 simpr2 1195 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐼 = (𝐽 · 𝐾))
4328oveq1d 7372 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝐽 · 𝐾) = (0 · 𝐾))
4439nn0cnd 12475 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐾 ∈ ℂ)
4544mul02d 11353 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (0 · 𝐾) = 0)
4642, 43, 453eqtrd 2780 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐼 = 0)
4746oveq2d 7373 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝑅𝑟𝐼) = (𝑅𝑟0))
4847, 32eqtr2d 2777 . . . . . . . 8 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝐼))
4934, 41, 483eqtrd 2780 . . . . . . 7 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
5049ex 413 . . . . . 6 ((𝐾 ∈ ℕ0𝐽 = 0) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
5150ex 413 . . . . 5 (𝐾 ∈ ℕ0 → (𝐽 = 0 → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
5227, 51jaod 857 . . . 4 (𝐾 ∈ ℕ0 → ((𝐽 ∈ ℕ ∨ 𝐽 = 0) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
531, 52biimtrid 241 . . 3 (𝐾 ∈ ℕ0 → (𝐽 ∈ ℕ0 → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
5453impcom 408 . 2 ((𝐽 ∈ ℕ0𝐾 ∈ ℕ0) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
5554impcom 408 1 (((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) ∧ (𝐽 ∈ ℕ0𝐾 ∈ ℕ0)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  cun 3908   class class class wbr 5105   I cid 5530  dom cdm 5633  ran crn 5634  cres 5635  (class class class)co 7357  0cc0 11051   · cmul 11056  cle 11190  cn 12153  0cn0 12413  𝑟crelexp 14904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-seq 13907  df-relexp 14905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator