Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpmulg Structured version   Visualization version   GIF version

Theorem relexpmulg 41207
Description: With ordered exponents, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
relexpmulg (((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) ∧ (𝐽 ∈ ℕ0𝐾 ∈ ℕ0)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))

Proof of Theorem relexpmulg
StepHypRef Expression
1 elnn0 12165 . . . 4 (𝐽 ∈ ℕ0 ↔ (𝐽 ∈ ℕ ∨ 𝐽 = 0))
2 elnn0 12165 . . . . . 6 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
3 relexpmulnn 41206 . . . . . . . . . 10 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
433adantl3 1166 . . . . . . . . 9 (((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
54expcom 413 . . . . . . . 8 ((𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
65expcom 413 . . . . . . 7 (𝐾 ∈ ℕ → (𝐽 ∈ ℕ → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
7 simprr 769 . . . . . . . . . . . . 13 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐼 = (𝐽 · 𝐾))
8 simpll 763 . . . . . . . . . . . . . 14 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐾 = 0)
98oveq2d 7271 . . . . . . . . . . . . 13 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → (𝐽 · 𝐾) = (𝐽 · 0))
10 simplr 765 . . . . . . . . . . . . . . 15 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐽 ∈ ℕ)
1110nncnd 11919 . . . . . . . . . . . . . 14 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐽 ∈ ℂ)
1211mul01d 11104 . . . . . . . . . . . . 13 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → (𝐽 · 0) = 0)
137, 9, 123eqtrd 2782 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐼 = 0)
14 simpl 482 . . . . . . . . . . . . 13 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → (𝐾 = 0 ∧ 𝐽 ∈ ℕ))
15 nnnle0 11936 . . . . . . . . . . . . . . 15 (𝐽 ∈ ℕ → ¬ 𝐽 ≤ 0)
1615adantl 481 . . . . . . . . . . . . . 14 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → ¬ 𝐽 ≤ 0)
17 simpl 482 . . . . . . . . . . . . . . 15 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → 𝐾 = 0)
1817breq2d 5082 . . . . . . . . . . . . . 14 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → (𝐽𝐾𝐽 ≤ 0))
1916, 18mtbird 324 . . . . . . . . . . . . 13 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → ¬ 𝐽𝐾)
2014, 19syl 17 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → ¬ 𝐽𝐾)
2113, 20jcnd 163 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → ¬ (𝐼 = 0 → 𝐽𝐾))
2221pm2.21d 121 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → ((𝐼 = 0 → 𝐽𝐾) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
2322exp32 420 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → (𝑅𝑉 → (𝐼 = (𝐽 · 𝐾) → ((𝐼 = 0 → 𝐽𝐾) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))))
24233impd 1346 . . . . . . . 8 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
2524ex 412 . . . . . . 7 (𝐾 = 0 → (𝐽 ∈ ℕ → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
266, 25jaoi 853 . . . . . 6 ((𝐾 ∈ ℕ ∨ 𝐾 = 0) → (𝐽 ∈ ℕ → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
272, 26sylbi 216 . . . . 5 (𝐾 ∈ ℕ0 → (𝐽 ∈ ℕ → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
28 simplr 765 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐽 = 0)
2928oveq2d 7271 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝑅𝑟𝐽) = (𝑅𝑟0))
30 simpr1 1192 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝑅𝑉)
31 relexp0g 14661 . . . . . . . . . . 11 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3230, 31syl 17 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3329, 32eqtrd 2778 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝑅𝑟𝐽) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3433oveq1d 7270 . . . . . . . 8 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟𝐾))
35 dmexg 7724 . . . . . . . . . . 11 (𝑅𝑉 → dom 𝑅 ∈ V)
36 rnexg 7725 . . . . . . . . . . 11 (𝑅𝑉 → ran 𝑅 ∈ V)
37 unexg 7577 . . . . . . . . . . 11 ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
3835, 36, 37syl2anc 583 . . . . . . . . . 10 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
3930, 38syl 17 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
40 simpll 763 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐾 ∈ ℕ0)
41 relexpiidm 41201 . . . . . . . . 9 (((dom 𝑅 ∪ ran 𝑅) ∈ V ∧ 𝐾 ∈ ℕ0) → (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟𝐾) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
4239, 40, 41syl2anc 583 . . . . . . . 8 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟𝐾) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
43 simpr2 1193 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐼 = (𝐽 · 𝐾))
4428oveq1d 7270 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝐽 · 𝐾) = (0 · 𝐾))
4540nn0cnd 12225 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐾 ∈ ℂ)
4645mul02d 11103 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (0 · 𝐾) = 0)
4743, 44, 463eqtrd 2782 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐼 = 0)
4847oveq2d 7271 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝑅𝑟𝐼) = (𝑅𝑟0))
4948, 32eqtr2d 2779 . . . . . . . 8 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝐼))
5034, 42, 493eqtrd 2782 . . . . . . 7 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
5150ex 412 . . . . . 6 ((𝐾 ∈ ℕ0𝐽 = 0) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
5251ex 412 . . . . 5 (𝐾 ∈ ℕ0 → (𝐽 = 0 → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
5327, 52jaod 855 . . . 4 (𝐾 ∈ ℕ0 → ((𝐽 ∈ ℕ ∨ 𝐽 = 0) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
541, 53syl5bi 241 . . 3 (𝐾 ∈ ℕ0 → (𝐽 ∈ ℕ0 → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
5554impcom 407 . 2 ((𝐽 ∈ ℕ0𝐾 ∈ ℕ0) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
5655impcom 407 1 (((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) ∧ (𝐽 ∈ ℕ0𝐾 ∈ ℕ0)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881   class class class wbr 5070   I cid 5479  dom cdm 5580  ran crn 5581  cres 5582  (class class class)co 7255  0cc0 10802   · cmul 10807  cle 10941  cn 11903  0cn0 12163  𝑟crelexp 14658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-relexp 14659
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator