Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcrecl Structured version   Visualization version   GIF version

Theorem limcrecl 43124
Description: If 𝐹 is a real-valued function, 𝐵 is a limit point of its domain, and the limit of 𝐹 at 𝐵 exists, then this limit is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcrecl.1 (𝜑𝐹:𝐴⟶ℝ)
limcrecl.2 (𝜑𝐴 ⊆ ℂ)
limcrecl.3 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴))
limcrecl.4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
Assertion
Ref Expression
limcrecl (𝜑𝐿 ∈ ℝ)

Proof of Theorem limcrecl
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrecl.4 . . 3 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
21adantr 480 . 2 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → 𝐿 ∈ (𝐹 lim 𝐵))
3 limccl 25020 . . . . . . . . . 10 (𝐹 lim 𝐵) ⊆ ℂ
43, 1sselid 3923 . . . . . . . . 9 (𝜑𝐿 ∈ ℂ)
54adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → 𝐿 ∈ ℂ)
6 simpr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ 𝐿 ∈ ℝ)
75, 6eldifd 3902 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → 𝐿 ∈ (ℂ ∖ ℝ))
87dstregt0 42773 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)))
9 cnxmet 23917 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ (∞Met‘ℂ)
109a1i 11 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
11 limcrecl.2 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℂ)
1211ad4antr 728 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → 𝐴 ⊆ ℂ)
1312ssdifssd 4081 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
14 limcrecl.3 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴))
15 eqid 2739 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1615cnfldtop 23928 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) ∈ Top
1716a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
18 unicntop 23930 . . . . . . . . . . . . . . . . 17 ℂ = (TopOpen‘ℂfld)
1911, 18sseqtrdi 3975 . . . . . . . . . . . . . . . 16 (𝜑𝐴 (TopOpen‘ℂfld))
20 eqid 2739 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2120lpdifsn 22275 . . . . . . . . . . . . . . . 16 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 (TopOpen‘ℂfld)) → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴) ↔ 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵}))))
2217, 19, 21syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴) ↔ 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵}))))
2314, 22mpbid 231 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵})))
2423ad4antr 728 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵})))
25 simpr 484 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
2615cnfldtopn 23926 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
2726lpbl 23640 . . . . . . . . . . . . 13 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝐴 ∖ {𝐵}) ⊆ ℂ ∧ 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵}))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝐴 ∖ {𝐵})𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
2810, 13, 24, 25, 27syl31anc 1371 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝐴 ∖ {𝐵})𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
29 eldif 3901 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧𝐴 ∧ ¬ 𝑧 ∈ {𝐵}))
3029anbi1i 623 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) ↔ ((𝑧𝐴 ∧ ¬ 𝑧 ∈ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
31 anass 468 . . . . . . . . . . . . . 14 (((𝑧𝐴 ∧ ¬ 𝑧 ∈ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) ↔ (𝑧𝐴 ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))))
3230, 31bitri 274 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) ↔ (𝑧𝐴 ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))))
3332rexbii2 3177 . . . . . . . . . . . 12 (∃𝑧 ∈ (𝐴 ∖ {𝐵})𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ ∃𝑧𝐴𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
3428, 33sylib 217 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧𝐴𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
35 simprl 767 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ¬ 𝑧 ∈ {𝐵})
36 velsn 4582 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
3736necon3bbii 2992 . . . . . . . . . . . . . . . . 17 𝑧 ∈ {𝐵} ↔ 𝑧𝐵)
3835, 37sylib 217 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑧𝐵)
39 simp-5l 781 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝜑)
40 simplr 765 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑦 ∈ ℝ+)
41 simprr 769 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
42 simp3 1136 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
439a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
4418lpss 22274 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ⊆ ℂ) → ((limPt‘(TopOpen‘ℂfld))‘𝐴) ⊆ ℂ)
4517, 11, 44syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((limPt‘(TopOpen‘ℂfld))‘𝐴) ⊆ ℂ)
4645, 14sseldd 3926 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ ℂ)
47463ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝐵 ∈ ℂ)
48 rpxr 12721 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℝ+𝑦 ∈ ℝ*)
49483ad2ant2 1132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝑦 ∈ ℝ*)
50 elbl 23522 . . . . . . . . . . . . . . . . . . . . . 22 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝐵(abs ∘ − )𝑧) < 𝑦)))
5143, 47, 49, 50syl3anc 1369 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝐵(abs ∘ − )𝑧) < 𝑦)))
5242, 51mpbid 231 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝑧 ∈ ℂ ∧ (𝐵(abs ∘ − )𝑧) < 𝑦))
5352simpld 494 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝑧 ∈ ℂ)
5453, 47abssubd 15146 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs‘(𝑧𝐵)) = (abs‘(𝐵𝑧)))
55 eqid 2739 . . . . . . . . . . . . . . . . . . . . 21 (abs ∘ − ) = (abs ∘ − )
5655cnmetdval 23915 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐵(abs ∘ − )𝑧) = (abs‘(𝐵𝑧)))
5747, 53, 56syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐵(abs ∘ − )𝑧) = (abs‘(𝐵𝑧)))
5852simprd 495 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐵(abs ∘ − )𝑧) < 𝑦)
5957, 58eqbrtrrd 5102 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs‘(𝐵𝑧)) < 𝑦)
6054, 59eqbrtrd 5100 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs‘(𝑧𝐵)) < 𝑦)
6139, 40, 41, 60syl3anc 1369 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (abs‘(𝑧𝐵)) < 𝑦)
6238, 61jca 511 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦))
6362adantlr 711 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦))
6439adantlr 711 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝜑)
65 simplr 765 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑧𝐴)
6664, 65jca 511 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (𝜑𝑧𝐴))
67 simp-5r 782 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑥 ∈ ℝ+)
68 simp-4r 780 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)))
69 rpre 12720 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
7069ad2antlr 723 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝑥 ∈ ℝ)
71 limcrecl.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹:𝐴⟶ℝ)
7271ffvelrnda 6955 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
7372recnd 10987 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
7473ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (𝐹𝑧) ∈ ℂ)
754ad3antrrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝐿 ∈ ℂ)
7674, 75subcld 11315 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ((𝐹𝑧) − 𝐿) ∈ ℂ)
7776abscld 15129 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (abs‘((𝐹𝑧) − 𝐿)) ∈ ℝ)
7872adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐴) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (𝐹𝑧) ∈ ℝ)
79 nfv 1920 . . . . . . . . . . . . . . . . . . . . 21 𝑤𝜑
80 nfra1 3144 . . . . . . . . . . . . . . . . . . . . 21 𝑤𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))
8179, 80nfan 1905 . . . . . . . . . . . . . . . . . . . 20 𝑤(𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)))
82 rspa 3132 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)) ∧ 𝑤 ∈ ℝ) → 𝑥 < (abs‘(𝐿𝑤)))
8382adantll 710 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑤 ∈ ℝ) → 𝑥 < (abs‘(𝐿𝑤)))
844adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ ℝ) → 𝐿 ∈ ℂ)
85 ax-resscn 10912 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℝ ⊆ ℂ
8685a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ℝ ⊆ ℂ)
8786sselda 3925 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℂ)
8884, 87abssubd 15146 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ ℝ) → (abs‘(𝐿𝑤)) = (abs‘(𝑤𝐿)))
8988adantlr 711 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑤 ∈ ℝ) → (abs‘(𝐿𝑤)) = (abs‘(𝑤𝐿)))
9083, 89breqtrd 5104 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑤 ∈ ℝ) → 𝑥 < (abs‘(𝑤𝐿)))
9190ex 412 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (𝑤 ∈ ℝ → 𝑥 < (abs‘(𝑤𝐿))))
9281, 91ralrimi 3141 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝑤𝐿)))
9392adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐴) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝑤𝐿)))
94 fvoveq1 7291 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐹𝑧) → (abs‘(𝑤𝐿)) = (abs‘((𝐹𝑧) − 𝐿)))
9594breq2d 5090 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹𝑧) → (𝑥 < (abs‘(𝑤𝐿)) ↔ 𝑥 < (abs‘((𝐹𝑧) − 𝐿))))
9695rspcv 3555 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ ℝ → (∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝑤𝐿)) → 𝑥 < (abs‘((𝐹𝑧) − 𝐿))))
9778, 93, 96sylc 65 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝐴) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝑥 < (abs‘((𝐹𝑧) − 𝐿)))
9897adantlr 711 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝑥 < (abs‘((𝐹𝑧) − 𝐿)))
9970, 77, 98ltnsymd 11107 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ¬ (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
10066, 67, 68, 99syl21anc 834 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ¬ (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
10163, 100jcnd 163 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
102101ex 412 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) → ((¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
103102reximdva 3204 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → (∃𝑧𝐴𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → ∃𝑧𝐴 ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
10434, 103mpd 15 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧𝐴 ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
105 rexnal 3167 . . . . . . . . . 10 (∃𝑧𝐴 ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥) ↔ ¬ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
106104, 105sylib 217 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ¬ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
107106nrexdv 3199 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
108107ex 412 . . . . . . 7 (((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)) → ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
109108reximdva 3204 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → (∃𝑥 ∈ ℝ+𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)) → ∃𝑥 ∈ ℝ+ ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
1108, 109mpd 15 . . . . 5 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ∃𝑥 ∈ ℝ+ ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
111 rexnal 3167 . . . . 5 (∃𝑥 ∈ ℝ+ ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥) ↔ ¬ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
112110, 111sylib 217 . . . 4 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
113112intnand 488 . . 3 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
11471, 86fssd 6614 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
115114, 11, 46ellimc3 25024 . . . 4 (𝜑 → (𝐿 ∈ (𝐹 lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))))
116115adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → (𝐿 ∈ (𝐹 lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))))
117113, 116mtbird 324 . 2 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ 𝐿 ∈ (𝐹 lim 𝐵))
1182, 117condan 814 1 (𝜑𝐿 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wral 3065  wrex 3066  cdif 3888  wss 3891  {csn 4566   cuni 4844   class class class wbr 5078  ccom 5592  wf 6426  cfv 6430  (class class class)co 7268  cc 10853  cr 10854  *cxr 10992   < clt 10993  cmin 11188  +crp 12712  abscabs 14926  TopOpenctopn 17113  ∞Metcxmet 20563  ballcbl 20565  fldccnfld 20578  Topctop 22023  limPtclp 22266   lim climc 25007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fi 9131  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-fz 13222  df-seq 13703  df-exp 13764  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-struct 16829  df-slot 16864  df-ndx 16876  df-base 16894  df-plusg 16956  df-mulr 16957  df-starv 16958  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-rest 17114  df-topn 17115  df-topgen 17135  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-cnfld 20579  df-top 22024  df-topon 22041  df-topsp 22063  df-bases 22077  df-cld 22151  df-ntr 22152  df-cls 22153  df-nei 22230  df-lp 22268  df-cnp 22360  df-xms 23454  df-ms 23455  df-limc 25011
This theorem is referenced by:  cncfiooiccre  43390  fourierdlem60  43661  fourierdlem61  43662  fourierdlem74  43675  fourierdlem75  43676  fourierdlem85  43686  fourierdlem88  43689  fourierdlem95  43696  fourierdlem103  43704  fourierdlem104  43705
  Copyright terms: Public domain W3C validator