Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcrecl Structured version   Visualization version   GIF version

Theorem limcrecl 42753
Description: If 𝐹 is a real-valued function, 𝐵 is a limit point of its domain, and the limit of 𝐹 at 𝐵 exists, then this limit is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcrecl.1 (𝜑𝐹:𝐴⟶ℝ)
limcrecl.2 (𝜑𝐴 ⊆ ℂ)
limcrecl.3 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴))
limcrecl.4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
Assertion
Ref Expression
limcrecl (𝜑𝐿 ∈ ℝ)

Proof of Theorem limcrecl
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrecl.4 . . 3 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
21adantr 484 . 2 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → 𝐿 ∈ (𝐹 lim 𝐵))
3 limccl 24640 . . . . . . . . . 10 (𝐹 lim 𝐵) ⊆ ℂ
43, 1sseldi 3885 . . . . . . . . 9 (𝜑𝐿 ∈ ℂ)
54adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → 𝐿 ∈ ℂ)
6 simpr 488 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ 𝐿 ∈ ℝ)
75, 6eldifd 3864 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → 𝐿 ∈ (ℂ ∖ ℝ))
87dstregt0 42398 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)))
9 cnxmet 23538 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ (∞Met‘ℂ)
109a1i 11 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
11 limcrecl.2 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℂ)
1211ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → 𝐴 ⊆ ℂ)
1312ssdifssd 4043 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
14 limcrecl.3 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴))
15 eqid 2739 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1615cnfldtop 23549 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) ∈ Top
1716a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
18 unicntop 23551 . . . . . . . . . . . . . . . . 17 ℂ = (TopOpen‘ℂfld)
1911, 18sseqtrdi 3937 . . . . . . . . . . . . . . . 16 (𝜑𝐴 (TopOpen‘ℂfld))
20 eqid 2739 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2120lpdifsn 21907 . . . . . . . . . . . . . . . 16 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 (TopOpen‘ℂfld)) → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴) ↔ 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵}))))
2217, 19, 21syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴) ↔ 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵}))))
2314, 22mpbid 235 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵})))
2423ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵})))
25 simpr 488 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
2615cnfldtopn 23547 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
2726lpbl 23269 . . . . . . . . . . . . 13 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝐴 ∖ {𝐵}) ⊆ ℂ ∧ 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵}))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝐴 ∖ {𝐵})𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
2810, 13, 24, 25, 27syl31anc 1374 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝐴 ∖ {𝐵})𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
29 eldif 3863 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧𝐴 ∧ ¬ 𝑧 ∈ {𝐵}))
3029anbi1i 627 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) ↔ ((𝑧𝐴 ∧ ¬ 𝑧 ∈ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
31 anass 472 . . . . . . . . . . . . . 14 (((𝑧𝐴 ∧ ¬ 𝑧 ∈ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) ↔ (𝑧𝐴 ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))))
3230, 31bitri 278 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) ↔ (𝑧𝐴 ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))))
3332rexbii2 3160 . . . . . . . . . . . 12 (∃𝑧 ∈ (𝐴 ∖ {𝐵})𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ ∃𝑧𝐴𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
3428, 33sylib 221 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧𝐴𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
35 simprl 771 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ¬ 𝑧 ∈ {𝐵})
36 velsn 4542 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
3736necon3bbii 2982 . . . . . . . . . . . . . . . . 17 𝑧 ∈ {𝐵} ↔ 𝑧𝐵)
3835, 37sylib 221 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑧𝐵)
39 simp-5l 785 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝜑)
40 simplr 769 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑦 ∈ ℝ+)
41 simprr 773 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
42 simp3 1139 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
439a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
4418lpss 21906 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ⊆ ℂ) → ((limPt‘(TopOpen‘ℂfld))‘𝐴) ⊆ ℂ)
4517, 11, 44syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((limPt‘(TopOpen‘ℂfld))‘𝐴) ⊆ ℂ)
4645, 14sseldd 3888 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ ℂ)
47463ad2ant1 1134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝐵 ∈ ℂ)
48 rpxr 12494 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℝ+𝑦 ∈ ℝ*)
49483ad2ant2 1135 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝑦 ∈ ℝ*)
50 elbl 23154 . . . . . . . . . . . . . . . . . . . . . 22 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝐵(abs ∘ − )𝑧) < 𝑦)))
5143, 47, 49, 50syl3anc 1372 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝐵(abs ∘ − )𝑧) < 𝑦)))
5242, 51mpbid 235 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝑧 ∈ ℂ ∧ (𝐵(abs ∘ − )𝑧) < 𝑦))
5352simpld 498 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝑧 ∈ ℂ)
5453, 47abssubd 14916 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs‘(𝑧𝐵)) = (abs‘(𝐵𝑧)))
55 eqid 2739 . . . . . . . . . . . . . . . . . . . . 21 (abs ∘ − ) = (abs ∘ − )
5655cnmetdval 23536 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐵(abs ∘ − )𝑧) = (abs‘(𝐵𝑧)))
5747, 53, 56syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐵(abs ∘ − )𝑧) = (abs‘(𝐵𝑧)))
5852simprd 499 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐵(abs ∘ − )𝑧) < 𝑦)
5957, 58eqbrtrrd 5064 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs‘(𝐵𝑧)) < 𝑦)
6054, 59eqbrtrd 5062 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs‘(𝑧𝐵)) < 𝑦)
6139, 40, 41, 60syl3anc 1372 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (abs‘(𝑧𝐵)) < 𝑦)
6238, 61jca 515 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦))
6362adantlr 715 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦))
6439adantlr 715 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝜑)
65 simplr 769 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑧𝐴)
6664, 65jca 515 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (𝜑𝑧𝐴))
67 simp-5r 786 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑥 ∈ ℝ+)
68 simp-4r 784 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)))
69 rpre 12493 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
7069ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝑥 ∈ ℝ)
71 limcrecl.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹:𝐴⟶ℝ)
7271ffvelrnda 6874 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
7372recnd 10760 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
7473ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (𝐹𝑧) ∈ ℂ)
754ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝐿 ∈ ℂ)
7674, 75subcld 11088 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ((𝐹𝑧) − 𝐿) ∈ ℂ)
7776abscld 14899 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (abs‘((𝐹𝑧) − 𝐿)) ∈ ℝ)
7872adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐴) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (𝐹𝑧) ∈ ℝ)
79 nfv 1921 . . . . . . . . . . . . . . . . . . . . 21 𝑤𝜑
80 nfra1 3132 . . . . . . . . . . . . . . . . . . . . 21 𝑤𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))
8179, 80nfan 1906 . . . . . . . . . . . . . . . . . . . 20 𝑤(𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)))
82 rspa 3120 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)) ∧ 𝑤 ∈ ℝ) → 𝑥 < (abs‘(𝐿𝑤)))
8382adantll 714 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑤 ∈ ℝ) → 𝑥 < (abs‘(𝐿𝑤)))
844adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ ℝ) → 𝐿 ∈ ℂ)
85 ax-resscn 10685 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℝ ⊆ ℂ
8685a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ℝ ⊆ ℂ)
8786sselda 3887 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℂ)
8884, 87abssubd 14916 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ ℝ) → (abs‘(𝐿𝑤)) = (abs‘(𝑤𝐿)))
8988adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑤 ∈ ℝ) → (abs‘(𝐿𝑤)) = (abs‘(𝑤𝐿)))
9083, 89breqtrd 5066 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑤 ∈ ℝ) → 𝑥 < (abs‘(𝑤𝐿)))
9190ex 416 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (𝑤 ∈ ℝ → 𝑥 < (abs‘(𝑤𝐿))))
9281, 91ralrimi 3129 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝑤𝐿)))
9392adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐴) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝑤𝐿)))
94 fvoveq1 7206 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐹𝑧) → (abs‘(𝑤𝐿)) = (abs‘((𝐹𝑧) − 𝐿)))
9594breq2d 5052 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹𝑧) → (𝑥 < (abs‘(𝑤𝐿)) ↔ 𝑥 < (abs‘((𝐹𝑧) − 𝐿))))
9695rspcv 3524 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ ℝ → (∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝑤𝐿)) → 𝑥 < (abs‘((𝐹𝑧) − 𝐿))))
9778, 93, 96sylc 65 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝐴) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝑥 < (abs‘((𝐹𝑧) − 𝐿)))
9897adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝑥 < (abs‘((𝐹𝑧) − 𝐿)))
9970, 77, 98ltnsymd 10880 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ¬ (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
10066, 67, 68, 99syl21anc 837 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ¬ (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
10163, 100jcnd 166 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
102101ex 416 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) → ((¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
103102reximdva 3185 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → (∃𝑧𝐴𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → ∃𝑧𝐴 ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
10434, 103mpd 15 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧𝐴 ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
105 rexnal 3152 . . . . . . . . . 10 (∃𝑧𝐴 ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥) ↔ ¬ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
106104, 105sylib 221 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ¬ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
107106nrexdv 3181 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
108107ex 416 . . . . . . 7 (((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)) → ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
109108reximdva 3185 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → (∃𝑥 ∈ ℝ+𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)) → ∃𝑥 ∈ ℝ+ ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
1108, 109mpd 15 . . . . 5 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ∃𝑥 ∈ ℝ+ ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
111 rexnal 3152 . . . . 5 (∃𝑥 ∈ ℝ+ ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥) ↔ ¬ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
112110, 111sylib 221 . . . 4 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
113112intnand 492 . . 3 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
11471, 86fssd 6533 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
115114, 11, 46ellimc3 24644 . . . 4 (𝜑 → (𝐿 ∈ (𝐹 lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))))
116115adantr 484 . . 3 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → (𝐿 ∈ (𝐹 lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))))
117113, 116mtbird 328 . 2 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ 𝐿 ∈ (𝐹 lim 𝐵))
1182, 117condan 818 1 (𝜑𝐿 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2935  wral 3054  wrex 3055  cdif 3850  wss 3853  {csn 4526   cuni 4806   class class class wbr 5040  ccom 5539  wf 6346  cfv 6350  (class class class)co 7183  cc 10626  cr 10627  *cxr 10765   < clt 10766  cmin 10961  +crp 12485  abscabs 14696  TopOpenctopn 16811  ∞Metcxmet 20215  ballcbl 20217  fldccnfld 20230  Topctop 21657  limPtclp 21898   lim climc 24627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-cnex 10684  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705  ax-pre-sup 10706
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-iin 4894  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-om 7613  df-1st 7727  df-2nd 7728  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-1o 8144  df-er 8333  df-map 8452  df-pm 8453  df-en 8569  df-dom 8570  df-sdom 8571  df-fin 8572  df-fi 8961  df-sup 8992  df-inf 8993  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-div 11389  df-nn 11730  df-2 11792  df-3 11793  df-4 11794  df-5 11795  df-6 11796  df-7 11797  df-8 11798  df-9 11799  df-n0 11990  df-z 12076  df-dec 12193  df-uz 12338  df-q 12444  df-rp 12486  df-xneg 12603  df-xadd 12604  df-xmul 12605  df-fz 12995  df-seq 13474  df-exp 13535  df-cj 14561  df-re 14562  df-im 14563  df-sqrt 14697  df-abs 14698  df-struct 16601  df-ndx 16602  df-slot 16603  df-base 16605  df-plusg 16694  df-mulr 16695  df-starv 16696  df-tset 16700  df-ple 16701  df-ds 16703  df-unif 16704  df-rest 16812  df-topn 16813  df-topgen 16833  df-psmet 20222  df-xmet 20223  df-met 20224  df-bl 20225  df-mopn 20226  df-cnfld 20231  df-top 21658  df-topon 21675  df-topsp 21697  df-bases 21710  df-cld 21783  df-ntr 21784  df-cls 21785  df-nei 21862  df-lp 21900  df-cnp 21992  df-xms 23086  df-ms 23087  df-limc 24631
This theorem is referenced by:  cncfiooiccre  43019  fourierdlem60  43290  fourierdlem61  43291  fourierdlem74  43304  fourierdlem75  43305  fourierdlem85  43315  fourierdlem88  43318  fourierdlem95  43325  fourierdlem103  43333  fourierdlem104  43334
  Copyright terms: Public domain W3C validator