Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcrecl Structured version   Visualization version   GIF version

Theorem limcrecl 45584
Description: If 𝐹 is a real-valued function, 𝐵 is a limit point of its domain, and the limit of 𝐹 at 𝐵 exists, then this limit is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcrecl.1 (𝜑𝐹:𝐴⟶ℝ)
limcrecl.2 (𝜑𝐴 ⊆ ℂ)
limcrecl.3 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴))
limcrecl.4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
Assertion
Ref Expression
limcrecl (𝜑𝐿 ∈ ℝ)

Proof of Theorem limcrecl
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrecl.4 . . 3 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
21adantr 480 . 2 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → 𝐿 ∈ (𝐹 lim 𝐵))
3 limccl 25924 . . . . . . . . . 10 (𝐹 lim 𝐵) ⊆ ℂ
43, 1sselid 3992 . . . . . . . . 9 (𝜑𝐿 ∈ ℂ)
54adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → 𝐿 ∈ ℂ)
6 simpr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ 𝐿 ∈ ℝ)
75, 6eldifd 3973 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → 𝐿 ∈ (ℂ ∖ ℝ))
87dstregt0 45231 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)))
9 cnxmet 24808 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ (∞Met‘ℂ)
109a1i 11 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
11 limcrecl.2 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℂ)
1211ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → 𝐴 ⊆ ℂ)
1312ssdifssd 4156 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
14 limcrecl.3 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴))
15 eqid 2734 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1615cnfldtop 24819 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) ∈ Top
1716a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
18 unicntop 24821 . . . . . . . . . . . . . . . . 17 ℂ = (TopOpen‘ℂfld)
1911, 18sseqtrdi 4045 . . . . . . . . . . . . . . . 16 (𝜑𝐴 (TopOpen‘ℂfld))
20 eqid 2734 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2120lpdifsn 23166 . . . . . . . . . . . . . . . 16 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 (TopOpen‘ℂfld)) → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴) ↔ 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵}))))
2217, 19, 21syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴) ↔ 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵}))))
2314, 22mpbid 232 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵})))
2423ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵})))
25 simpr 484 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
2615cnfldtopn 24817 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
2726lpbl 24531 . . . . . . . . . . . . 13 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝐴 ∖ {𝐵}) ⊆ ℂ ∧ 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵}))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝐴 ∖ {𝐵})𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
2810, 13, 24, 25, 27syl31anc 1372 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝐴 ∖ {𝐵})𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
29 eldif 3972 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧𝐴 ∧ ¬ 𝑧 ∈ {𝐵}))
3029anbi1i 624 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) ↔ ((𝑧𝐴 ∧ ¬ 𝑧 ∈ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
31 anass 468 . . . . . . . . . . . . . 14 (((𝑧𝐴 ∧ ¬ 𝑧 ∈ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) ↔ (𝑧𝐴 ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))))
3230, 31bitri 275 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) ↔ (𝑧𝐴 ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))))
3332rexbii2 3087 . . . . . . . . . . . 12 (∃𝑧 ∈ (𝐴 ∖ {𝐵})𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ ∃𝑧𝐴𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
3428, 33sylib 218 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧𝐴𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
35 simprl 771 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ¬ 𝑧 ∈ {𝐵})
36 velsn 4646 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
3736necon3bbii 2985 . . . . . . . . . . . . . . . . 17 𝑧 ∈ {𝐵} ↔ 𝑧𝐵)
3835, 37sylib 218 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑧𝐵)
39 simp-5l 785 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝜑)
40 simplr 769 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑦 ∈ ℝ+)
41 simprr 773 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
42 simp3 1137 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
439a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
4418lpss 23165 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ⊆ ℂ) → ((limPt‘(TopOpen‘ℂfld))‘𝐴) ⊆ ℂ)
4517, 11, 44syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((limPt‘(TopOpen‘ℂfld))‘𝐴) ⊆ ℂ)
4645, 14sseldd 3995 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ ℂ)
47463ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝐵 ∈ ℂ)
48 rpxr 13041 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℝ+𝑦 ∈ ℝ*)
49483ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝑦 ∈ ℝ*)
50 elbl 24413 . . . . . . . . . . . . . . . . . . . . . 22 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝐵(abs ∘ − )𝑧) < 𝑦)))
5143, 47, 49, 50syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝐵(abs ∘ − )𝑧) < 𝑦)))
5242, 51mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝑧 ∈ ℂ ∧ (𝐵(abs ∘ − )𝑧) < 𝑦))
5352simpld 494 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝑧 ∈ ℂ)
5453, 47abssubd 15488 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs‘(𝑧𝐵)) = (abs‘(𝐵𝑧)))
55 eqid 2734 . . . . . . . . . . . . . . . . . . . . 21 (abs ∘ − ) = (abs ∘ − )
5655cnmetdval 24806 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐵(abs ∘ − )𝑧) = (abs‘(𝐵𝑧)))
5747, 53, 56syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐵(abs ∘ − )𝑧) = (abs‘(𝐵𝑧)))
5852simprd 495 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐵(abs ∘ − )𝑧) < 𝑦)
5957, 58eqbrtrrd 5171 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs‘(𝐵𝑧)) < 𝑦)
6054, 59eqbrtrd 5169 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs‘(𝑧𝐵)) < 𝑦)
6139, 40, 41, 60syl3anc 1370 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (abs‘(𝑧𝐵)) < 𝑦)
6238, 61jca 511 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦))
6362adantlr 715 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦))
6439adantlr 715 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝜑)
65 simplr 769 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑧𝐴)
6664, 65jca 511 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (𝜑𝑧𝐴))
67 simp-5r 786 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑥 ∈ ℝ+)
68 simp-4r 784 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)))
69 rpre 13040 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
7069ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝑥 ∈ ℝ)
71 limcrecl.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹:𝐴⟶ℝ)
7271ffvelcdmda 7103 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
7372recnd 11286 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
7473ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (𝐹𝑧) ∈ ℂ)
754ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝐿 ∈ ℂ)
7674, 75subcld 11617 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ((𝐹𝑧) − 𝐿) ∈ ℂ)
7776abscld 15471 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (abs‘((𝐹𝑧) − 𝐿)) ∈ ℝ)
7872adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐴) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (𝐹𝑧) ∈ ℝ)
79 nfv 1911 . . . . . . . . . . . . . . . . . . . . 21 𝑤𝜑
80 nfra1 3281 . . . . . . . . . . . . . . . . . . . . 21 𝑤𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))
8179, 80nfan 1896 . . . . . . . . . . . . . . . . . . . 20 𝑤(𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)))
82 rspa 3245 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)) ∧ 𝑤 ∈ ℝ) → 𝑥 < (abs‘(𝐿𝑤)))
8382adantll 714 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑤 ∈ ℝ) → 𝑥 < (abs‘(𝐿𝑤)))
844adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ ℝ) → 𝐿 ∈ ℂ)
85 ax-resscn 11209 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℝ ⊆ ℂ
8685a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ℝ ⊆ ℂ)
8786sselda 3994 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℂ)
8884, 87abssubd 15488 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ ℝ) → (abs‘(𝐿𝑤)) = (abs‘(𝑤𝐿)))
8988adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑤 ∈ ℝ) → (abs‘(𝐿𝑤)) = (abs‘(𝑤𝐿)))
9083, 89breqtrd 5173 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑤 ∈ ℝ) → 𝑥 < (abs‘(𝑤𝐿)))
9190ex 412 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (𝑤 ∈ ℝ → 𝑥 < (abs‘(𝑤𝐿))))
9281, 91ralrimi 3254 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝑤𝐿)))
9392adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐴) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝑤𝐿)))
94 fvoveq1 7453 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐹𝑧) → (abs‘(𝑤𝐿)) = (abs‘((𝐹𝑧) − 𝐿)))
9594breq2d 5159 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹𝑧) → (𝑥 < (abs‘(𝑤𝐿)) ↔ 𝑥 < (abs‘((𝐹𝑧) − 𝐿))))
9695rspcv 3617 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ ℝ → (∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝑤𝐿)) → 𝑥 < (abs‘((𝐹𝑧) − 𝐿))))
9778, 93, 96sylc 65 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝐴) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝑥 < (abs‘((𝐹𝑧) − 𝐿)))
9897adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝑥 < (abs‘((𝐹𝑧) − 𝐿)))
9970, 77, 98ltnsymd 11407 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ¬ (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
10066, 67, 68, 99syl21anc 838 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ¬ (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
10163, 100jcnd 163 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
102101ex 412 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) → ((¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
103102reximdva 3165 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → (∃𝑧𝐴𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → ∃𝑧𝐴 ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
10434, 103mpd 15 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧𝐴 ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
105 rexnal 3097 . . . . . . . . . 10 (∃𝑧𝐴 ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥) ↔ ¬ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
106104, 105sylib 218 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ¬ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
107106nrexdv 3146 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
108107ex 412 . . . . . . 7 (((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)) → ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
109108reximdva 3165 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → (∃𝑥 ∈ ℝ+𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)) → ∃𝑥 ∈ ℝ+ ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
1108, 109mpd 15 . . . . 5 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ∃𝑥 ∈ ℝ+ ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
111 rexnal 3097 . . . . 5 (∃𝑥 ∈ ℝ+ ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥) ↔ ¬ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
112110, 111sylib 218 . . . 4 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
113112intnand 488 . . 3 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
11471, 86fssd 6753 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
115114, 11, 46ellimc3 25928 . . . 4 (𝜑 → (𝐿 ∈ (𝐹 lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))))
116115adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → (𝐿 ∈ (𝐹 lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))))
117113, 116mtbird 325 . 2 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ 𝐿 ∈ (𝐹 lim 𝐵))
1182, 117condan 818 1 (𝜑𝐿 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  cdif 3959  wss 3962  {csn 4630   cuni 4911   class class class wbr 5147  ccom 5692  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  *cxr 11291   < clt 11292  cmin 11489  +crp 13031  abscabs 15269  TopOpenctopn 17467  ∞Metcxmet 21366  ballcbl 21368  fldccnfld 21381  Topctop 22914  limPtclp 23157   lim climc 25911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-fz 13544  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17468  df-topn 17469  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-cnp 23251  df-xms 24345  df-ms 24346  df-limc 25915
This theorem is referenced by:  cncfiooiccre  45850  fourierdlem60  46121  fourierdlem61  46122  fourierdlem74  46135  fourierdlem75  46136  fourierdlem85  46146  fourierdlem88  46149  fourierdlem95  46156  fourierdlem103  46164  fourierdlem104  46165
  Copyright terms: Public domain W3C validator