Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcrecl Structured version   Visualization version   GIF version

Theorem limcrecl 45620
Description: If 𝐹 is a real-valued function, 𝐵 is a limit point of its domain, and the limit of 𝐹 at 𝐵 exists, then this limit is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcrecl.1 (𝜑𝐹:𝐴⟶ℝ)
limcrecl.2 (𝜑𝐴 ⊆ ℂ)
limcrecl.3 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴))
limcrecl.4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
Assertion
Ref Expression
limcrecl (𝜑𝐿 ∈ ℝ)

Proof of Theorem limcrecl
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrecl.4 . . 3 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
21adantr 480 . 2 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → 𝐿 ∈ (𝐹 lim 𝐵))
3 limccl 25774 . . . . . . . . . 10 (𝐹 lim 𝐵) ⊆ ℂ
43, 1sselid 3933 . . . . . . . . 9 (𝜑𝐿 ∈ ℂ)
54adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → 𝐿 ∈ ℂ)
6 simpr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ 𝐿 ∈ ℝ)
75, 6eldifd 3914 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → 𝐿 ∈ (ℂ ∖ ℝ))
87dstregt0 45274 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)))
9 cnxmet 24658 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ (∞Met‘ℂ)
109a1i 11 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
11 limcrecl.2 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℂ)
1211ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → 𝐴 ⊆ ℂ)
1312ssdifssd 4098 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
14 limcrecl.3 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴))
15 eqid 2729 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1615cnfldtop 24669 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) ∈ Top
1716a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
18 unicntop 24671 . . . . . . . . . . . . . . . . 17 ℂ = (TopOpen‘ℂfld)
1911, 18sseqtrdi 3976 . . . . . . . . . . . . . . . 16 (𝜑𝐴 (TopOpen‘ℂfld))
20 eqid 2729 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2120lpdifsn 23028 . . . . . . . . . . . . . . . 16 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 (TopOpen‘ℂfld)) → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴) ↔ 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵}))))
2217, 19, 21syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴) ↔ 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵}))))
2314, 22mpbid 232 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵})))
2423ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵})))
25 simpr 484 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
2615cnfldtopn 24667 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
2726lpbl 24389 . . . . . . . . . . . . 13 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝐴 ∖ {𝐵}) ⊆ ℂ ∧ 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴 ∖ {𝐵}))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝐴 ∖ {𝐵})𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
2810, 13, 24, 25, 27syl31anc 1375 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝐴 ∖ {𝐵})𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
29 eldif 3913 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧𝐴 ∧ ¬ 𝑧 ∈ {𝐵}))
3029anbi1i 624 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) ↔ ((𝑧𝐴 ∧ ¬ 𝑧 ∈ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
31 anass 468 . . . . . . . . . . . . . 14 (((𝑧𝐴 ∧ ¬ 𝑧 ∈ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) ↔ (𝑧𝐴 ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))))
3230, 31bitri 275 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) ↔ (𝑧𝐴 ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))))
3332rexbii2 3072 . . . . . . . . . . . 12 (∃𝑧 ∈ (𝐴 ∖ {𝐵})𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ ∃𝑧𝐴𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
3428, 33sylib 218 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧𝐴𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
35 simprl 770 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ¬ 𝑧 ∈ {𝐵})
36 velsn 4593 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
3736necon3bbii 2972 . . . . . . . . . . . . . . . . 17 𝑧 ∈ {𝐵} ↔ 𝑧𝐵)
3835, 37sylib 218 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑧𝐵)
39 simp-5l 784 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝜑)
40 simplr 768 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑦 ∈ ℝ+)
41 simprr 772 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
42 simp3 1138 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
439a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
4418lpss 23027 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐴 ⊆ ℂ) → ((limPt‘(TopOpen‘ℂfld))‘𝐴) ⊆ ℂ)
4517, 11, 44syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((limPt‘(TopOpen‘ℂfld))‘𝐴) ⊆ ℂ)
4645, 14sseldd 3936 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ ℂ)
47463ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝐵 ∈ ℂ)
48 rpxr 12903 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℝ+𝑦 ∈ ℝ*)
49483ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝑦 ∈ ℝ*)
50 elbl 24274 . . . . . . . . . . . . . . . . . . . . . 22 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℝ*) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝐵(abs ∘ − )𝑧) < 𝑦)))
5143, 47, 49, 50syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝐵(abs ∘ − )𝑧) < 𝑦)))
5242, 51mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝑧 ∈ ℂ ∧ (𝐵(abs ∘ − )𝑧) < 𝑦))
5352simpld 494 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → 𝑧 ∈ ℂ)
5453, 47abssubd 15363 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs‘(𝑧𝐵)) = (abs‘(𝐵𝑧)))
55 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (abs ∘ − ) = (abs ∘ − )
5655cnmetdval 24656 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐵(abs ∘ − )𝑧) = (abs‘(𝐵𝑧)))
5747, 53, 56syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐵(abs ∘ − )𝑧) = (abs‘(𝐵𝑧)))
5852simprd 495 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐵(abs ∘ − )𝑧) < 𝑦)
5957, 58eqbrtrrd 5116 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs‘(𝐵𝑧)) < 𝑦)
6054, 59eqbrtrd 5114 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ+𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (abs‘(𝑧𝐵)) < 𝑦)
6139, 40, 41, 60syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (abs‘(𝑧𝐵)) < 𝑦)
6238, 61jca 511 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦))
6362adantlr 715 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦))
6439adantlr 715 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝜑)
65 simplr 768 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑧𝐴)
6664, 65jca 511 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → (𝜑𝑧𝐴))
67 simp-5r 785 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → 𝑥 ∈ ℝ+)
68 simp-4r 783 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)))
69 rpre 12902 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
7069ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝑥 ∈ ℝ)
71 limcrecl.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹:𝐴⟶ℝ)
7271ffvelcdmda 7018 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℝ)
7372recnd 11143 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
7473ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (𝐹𝑧) ∈ ℂ)
754ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝐿 ∈ ℂ)
7674, 75subcld 11475 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ((𝐹𝑧) − 𝐿) ∈ ℂ)
7776abscld 15346 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (abs‘((𝐹𝑧) − 𝐿)) ∈ ℝ)
7872adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐴) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (𝐹𝑧) ∈ ℝ)
79 nfv 1914 . . . . . . . . . . . . . . . . . . . . 21 𝑤𝜑
80 nfra1 3253 . . . . . . . . . . . . . . . . . . . . 21 𝑤𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))
8179, 80nfan 1899 . . . . . . . . . . . . . . . . . . . 20 𝑤(𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)))
82 rspa 3218 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)) ∧ 𝑤 ∈ ℝ) → 𝑥 < (abs‘(𝐿𝑤)))
8382adantll 714 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑤 ∈ ℝ) → 𝑥 < (abs‘(𝐿𝑤)))
844adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ ℝ) → 𝐿 ∈ ℂ)
85 ax-resscn 11066 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℝ ⊆ ℂ
8685a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ℝ ⊆ ℂ)
8786sselda 3935 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℂ)
8884, 87abssubd 15363 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ ℝ) → (abs‘(𝐿𝑤)) = (abs‘(𝑤𝐿)))
8988adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑤 ∈ ℝ) → (abs‘(𝐿𝑤)) = (abs‘(𝑤𝐿)))
9083, 89breqtrd 5118 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑤 ∈ ℝ) → 𝑥 < (abs‘(𝑤𝐿)))
9190ex 412 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → (𝑤 ∈ ℝ → 𝑥 < (abs‘(𝑤𝐿))))
9281, 91ralrimi 3227 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝑤𝐿)))
9392adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐴) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝑤𝐿)))
94 fvoveq1 7372 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐹𝑧) → (abs‘(𝑤𝐿)) = (abs‘((𝐹𝑧) − 𝐿)))
9594breq2d 5104 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹𝑧) → (𝑥 < (abs‘(𝑤𝐿)) ↔ 𝑥 < (abs‘((𝐹𝑧) − 𝐿))))
9695rspcv 3573 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ ℝ → (∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝑤𝐿)) → 𝑥 < (abs‘((𝐹𝑧) − 𝐿))))
9778, 93, 96sylc 65 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝐴) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝑥 < (abs‘((𝐹𝑧) − 𝐿)))
9897adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → 𝑥 < (abs‘((𝐹𝑧) − 𝐿)))
9970, 77, 98ltnsymd 11265 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝐴) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ¬ (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
10066, 67, 68, 99syl21anc 837 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ¬ (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
10163, 100jcnd 163 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) ∧ (¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))) → ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
102101ex 412 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝐴) → ((¬ 𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
103102reximdva 3142 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → (∃𝑧𝐴𝑧 ∈ {𝐵} ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → ∃𝑧𝐴 ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
10434, 103mpd 15 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ∃𝑧𝐴 ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
105 rexnal 3081 . . . . . . . . . 10 (∃𝑧𝐴 ¬ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥) ↔ ¬ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
106104, 105sylib 218 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) ∧ 𝑦 ∈ ℝ+) → ¬ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
107106nrexdv 3124 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤))) → ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
108107ex 412 . . . . . . 7 (((𝜑 ∧ ¬ 𝐿 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∀𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)) → ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
109108reximdva 3142 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → (∃𝑥 ∈ ℝ+𝑤 ∈ ℝ 𝑥 < (abs‘(𝐿𝑤)) → ∃𝑥 ∈ ℝ+ ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
1108, 109mpd 15 . . . . 5 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ∃𝑥 ∈ ℝ+ ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
111 rexnal 3081 . . . . 5 (∃𝑥 ∈ ℝ+ ¬ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥) ↔ ¬ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
112110, 111sylib 218 . . . 4 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
113112intnand 488 . . 3 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
11471, 86fssd 6669 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
115114, 11, 46ellimc3 25778 . . . 4 (𝜑 → (𝐿 ∈ (𝐹 lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))))
116115adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → (𝐿 ∈ (𝐹 lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))))
117113, 116mtbird 325 . 2 ((𝜑 ∧ ¬ 𝐿 ∈ ℝ) → ¬ 𝐿 ∈ (𝐹 lim 𝐵))
1182, 117condan 817 1 (𝜑𝐿 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3900  wss 3903  {csn 4577   cuni 4858   class class class wbr 5092  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  *cxr 11148   < clt 11149  cmin 11347  +crp 12893  abscabs 15141  TopOpenctopn 17325  ∞Metcxmet 21246  ballcbl 21248  fldccnfld 21261  Topctop 22778  limPtclp 23019   lim climc 25761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-rest 17326  df-topn 17327  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-cnp 23113  df-xms 24206  df-ms 24207  df-limc 25765
This theorem is referenced by:  cncfiooiccre  45886  fourierdlem60  46157  fourierdlem61  46158  fourierdlem74  46171  fourierdlem75  46172  fourierdlem85  46182  fourierdlem88  46185  fourierdlem95  46192  fourierdlem103  46200  fourierdlem104  46201
  Copyright terms: Public domain W3C validator