Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem4 Structured version   Visualization version   GIF version

Theorem isf34lem4 9791
 Description: Lemma for isfin3-4 9796. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem isf34lem4
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sspwuni 4986 . . . . 5 (𝑋 ⊆ 𝒫 𝐴 𝑋𝐴)
2 compss.a . . . . . 6 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
32isf34lem1 9786 . . . . 5 ((𝐴𝑉 𝑋𝐴) → (𝐹 𝑋) = (𝐴 𝑋))
41, 3sylan2b 596 . . . 4 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝐹 𝑋) = (𝐴 𝑋))
54adantrr 716 . . 3 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = (𝐴 𝑋))
6 simplrr 777 . . . . . . . . . 10 ((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ (𝐴𝑎) ∈ 𝑋)) → ¬ 𝑏 𝑋)
7 simprl 770 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) → 𝑏𝐴)
87ad2antrr 725 . . . . . . . . . . . . 13 (((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ (𝐴𝑎) ∈ 𝑋)) ∧ ¬ 𝑏𝑎) → 𝑏𝐴)
9 simpr 488 . . . . . . . . . . . . 13 (((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ (𝐴𝑎) ∈ 𝑋)) ∧ ¬ 𝑏𝑎) → ¬ 𝑏𝑎)
108, 9eldifd 3892 . . . . . . . . . . . 12 (((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ (𝐴𝑎) ∈ 𝑋)) ∧ ¬ 𝑏𝑎) → 𝑏 ∈ (𝐴𝑎))
11 simplrr 777 . . . . . . . . . . . 12 (((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ (𝐴𝑎) ∈ 𝑋)) ∧ ¬ 𝑏𝑎) → (𝐴𝑎) ∈ 𝑋)
12 elunii 4806 . . . . . . . . . . . 12 ((𝑏 ∈ (𝐴𝑎) ∧ (𝐴𝑎) ∈ 𝑋) → 𝑏 𝑋)
1310, 11, 12syl2anc 587 . . . . . . . . . . 11 (((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ (𝐴𝑎) ∈ 𝑋)) ∧ ¬ 𝑏𝑎) → 𝑏 𝑋)
1413ex 416 . . . . . . . . . 10 ((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ (𝐴𝑎) ∈ 𝑋)) → (¬ 𝑏𝑎𝑏 𝑋))
156, 14mt3d 150 . . . . . . . . 9 ((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ (𝐴𝑎) ∈ 𝑋)) → 𝑏𝑎)
1615expr 460 . . . . . . . 8 ((((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) ∧ 𝑎 ∈ 𝒫 𝐴) → ((𝐴𝑎) ∈ 𝑋𝑏𝑎))
1716ralrimiva 3149 . . . . . . 7 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝐴 ∧ ¬ 𝑏 𝑋)) → ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎))
1817ex 416 . . . . . 6 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ((𝑏𝐴 ∧ ¬ 𝑏 𝑋) → ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎)))
19 n0 4260 . . . . . . . . 9 (𝑋 ≠ ∅ ↔ ∃𝑐 𝑐𝑋)
20 simpr 488 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → 𝑋 ⊆ 𝒫 𝐴)
2120sselda 3915 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → 𝑐 ∈ 𝒫 𝐴)
2221elpwid 4508 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → 𝑐𝐴)
23 dfss4 4185 . . . . . . . . . . . . . . 15 (𝑐𝐴 ↔ (𝐴 ∖ (𝐴𝑐)) = 𝑐)
2422, 23sylib 221 . . . . . . . . . . . . . 14 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → (𝐴 ∖ (𝐴𝑐)) = 𝑐)
25 simpr 488 . . . . . . . . . . . . . 14 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → 𝑐𝑋)
2624, 25eqeltrd 2890 . . . . . . . . . . . . 13 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → (𝐴 ∖ (𝐴𝑐)) ∈ 𝑋)
27 difss 4059 . . . . . . . . . . . . . . . 16 (𝐴𝑐) ⊆ 𝐴
28 elpw2g 5212 . . . . . . . . . . . . . . . 16 (𝐴𝑉 → ((𝐴𝑐) ∈ 𝒫 𝐴 ↔ (𝐴𝑐) ⊆ 𝐴))
2927, 28mpbiri 261 . . . . . . . . . . . . . . 15 (𝐴𝑉 → (𝐴𝑐) ∈ 𝒫 𝐴)
3029ad2antrr 725 . . . . . . . . . . . . . 14 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → (𝐴𝑐) ∈ 𝒫 𝐴)
31 difeq2 4044 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝐴𝑐) → (𝐴𝑎) = (𝐴 ∖ (𝐴𝑐)))
3231eleq1d 2874 . . . . . . . . . . . . . . . 16 (𝑎 = (𝐴𝑐) → ((𝐴𝑎) ∈ 𝑋 ↔ (𝐴 ∖ (𝐴𝑐)) ∈ 𝑋))
33 eleq2 2878 . . . . . . . . . . . . . . . 16 (𝑎 = (𝐴𝑐) → (𝑏𝑎𝑏 ∈ (𝐴𝑐)))
3432, 33imbi12d 348 . . . . . . . . . . . . . . 15 (𝑎 = (𝐴𝑐) → (((𝐴𝑎) ∈ 𝑋𝑏𝑎) ↔ ((𝐴 ∖ (𝐴𝑐)) ∈ 𝑋𝑏 ∈ (𝐴𝑐))))
3534rspcv 3566 . . . . . . . . . . . . . 14 ((𝐴𝑐) ∈ 𝒫 𝐴 → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → ((𝐴 ∖ (𝐴𝑐)) ∈ 𝑋𝑏 ∈ (𝐴𝑐))))
3630, 35syl 17 . . . . . . . . . . . . 13 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → ((𝐴 ∖ (𝐴𝑐)) ∈ 𝑋𝑏 ∈ (𝐴𝑐))))
3726, 36mpid 44 . . . . . . . . . . . 12 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → 𝑏 ∈ (𝐴𝑐)))
38 eldifi 4054 . . . . . . . . . . . 12 (𝑏 ∈ (𝐴𝑐) → 𝑏𝐴)
3937, 38syl6 35 . . . . . . . . . . 11 (((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) ∧ 𝑐𝑋) → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → 𝑏𝐴))
4039ex 416 . . . . . . . . . 10 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝑐𝑋 → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → 𝑏𝐴)))
4140exlimdv 1934 . . . . . . . . 9 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (∃𝑐 𝑐𝑋 → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → 𝑏𝐴)))
4219, 41syl5bi 245 . . . . . . . 8 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝑋 ≠ ∅ → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → 𝑏𝐴)))
4342impr 458 . . . . . . 7 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → 𝑏𝐴))
44 eluni 4804 . . . . . . . . 9 (𝑏 𝑋 ↔ ∃𝑐(𝑏𝑐𝑐𝑋))
4529ad2antrr 725 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝑐𝑐𝑋)) → (𝐴𝑐) ∈ 𝒫 𝐴)
4626adantlrr 720 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ 𝑐𝑋) → (𝐴 ∖ (𝐴𝑐)) ∈ 𝑋)
4746adantrl 715 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝑐𝑐𝑋)) → (𝐴 ∖ (𝐴𝑐)) ∈ 𝑋)
48 elndif 4056 . . . . . . . . . . . . . . 15 (𝑏𝑐 → ¬ 𝑏 ∈ (𝐴𝑐))
4948ad2antrl 727 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝑐𝑐𝑋)) → ¬ 𝑏 ∈ (𝐴𝑐))
5047, 49jcnd 166 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝑐𝑐𝑋)) → ¬ ((𝐴 ∖ (𝐴𝑐)) ∈ 𝑋𝑏 ∈ (𝐴𝑐)))
5134notbid 321 . . . . . . . . . . . . . 14 (𝑎 = (𝐴𝑐) → (¬ ((𝐴𝑎) ∈ 𝑋𝑏𝑎) ↔ ¬ ((𝐴 ∖ (𝐴𝑐)) ∈ 𝑋𝑏 ∈ (𝐴𝑐))))
5251rspcev 3571 . . . . . . . . . . . . 13 (((𝐴𝑐) ∈ 𝒫 𝐴 ∧ ¬ ((𝐴 ∖ (𝐴𝑐)) ∈ 𝑋𝑏 ∈ (𝐴𝑐))) → ∃𝑎 ∈ 𝒫 𝐴 ¬ ((𝐴𝑎) ∈ 𝑋𝑏𝑎))
5345, 50, 52syl2anc 587 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝑐𝑐𝑋)) → ∃𝑎 ∈ 𝒫 𝐴 ¬ ((𝐴𝑎) ∈ 𝑋𝑏𝑎))
54 rexnal 3201 . . . . . . . . . . . 12 (∃𝑎 ∈ 𝒫 𝐴 ¬ ((𝐴𝑎) ∈ 𝑋𝑏𝑎) ↔ ¬ ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎))
5553, 54sylib 221 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) ∧ (𝑏𝑐𝑐𝑋)) → ¬ ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎))
5655ex 416 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ((𝑏𝑐𝑐𝑋) → ¬ ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎)))
5756exlimdv 1934 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (∃𝑐(𝑏𝑐𝑐𝑋) → ¬ ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎)))
5844, 57syl5bi 245 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝑏 𝑋 → ¬ ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎)))
5958con2d 136 . . . . . . 7 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → ¬ 𝑏 𝑋))
6043, 59jcad 516 . . . . . 6 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎) → (𝑏𝐴 ∧ ¬ 𝑏 𝑋)))
6118, 60impbid 215 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ((𝑏𝐴 ∧ ¬ 𝑏 𝑋) ↔ ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎)))
62 eldif 3891 . . . . 5 (𝑏 ∈ (𝐴 𝑋) ↔ (𝑏𝐴 ∧ ¬ 𝑏 𝑋))
63 vex 3444 . . . . . 6 𝑏 ∈ V
6463elintrab 4851 . . . . 5 (𝑏 {𝑎 ∈ 𝒫 𝐴 ∣ (𝐴𝑎) ∈ 𝑋} ↔ ∀𝑎 ∈ 𝒫 𝐴((𝐴𝑎) ∈ 𝑋𝑏𝑎))
6561, 62, 643bitr4g 317 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝑏 ∈ (𝐴 𝑋) ↔ 𝑏 {𝑎 ∈ 𝒫 𝐴 ∣ (𝐴𝑎) ∈ 𝑋}))
6665eqrdv 2796 . . 3 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐴 𝑋) = {𝑎 ∈ 𝒫 𝐴 ∣ (𝐴𝑎) ∈ 𝑋})
675, 66eqtrd 2833 . 2 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = {𝑎 ∈ 𝒫 𝐴 ∣ (𝐴𝑎) ∈ 𝑋})
682compss 9790 . . 3 (𝐹𝑋) = {𝑎 ∈ 𝒫 𝐴 ∣ (𝐴𝑎) ∈ 𝑋}
6968inteqi 4843 . 2 (𝐹𝑋) = {𝑎 ∈ 𝒫 𝐴 ∣ (𝐴𝑎) ∈ 𝑋}
7067, 69eqtr4di 2851 1 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = (𝐹𝑋))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107  {crab 3110   ∖ cdif 3878   ⊆ wss 3881  ∅c0 4243  𝒫 cpw 4497  ∪ cuni 4801  ∩ cint 4839   ↦ cmpt 5111   “ cima 5523  ‘cfv 6325 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pr 5296 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-int 4840  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-iota 6284  df-fun 6327  df-fv 6333 This theorem is referenced by:  isf34lem5  9792  isf34lem6  9794
 Copyright terms: Public domain W3C validator