Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0prpw Structured version   Visualization version   GIF version

Theorem nn0prpw 36318
Description: Two nonnegative integers are the same if and only if they are divisible by the same prime powers. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
nn0prpw ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
Distinct variable groups:   𝑛,𝑝,𝐴   𝐵,𝑛,𝑝

Proof of Theorem nn0prpw
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 breq2 5114 . . . 4 (𝐴 = 𝐵 → ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))
21a1d 25 . . 3 (𝐴 = 𝐵 → ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
32ralrimivv 3179 . 2 (𝐴 = 𝐵 → ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))
4 elnn0 12451 . . 3 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
5 elnn0 12451 . . . . . . 7 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
6 nnre 12200 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
7 nnre 12200 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
8 lttri2 11263 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
96, 7, 8syl2an 596 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
109ancoms 458 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
11 nn0prpwlem 36317 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → ∀𝑘 ∈ ℕ (𝑘 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵)))
12 breq1 5113 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐴 → (𝑘 < 𝐵𝐴 < 𝐵))
13 breq2 5114 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝐴 → ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴))
1413bibi1d 343 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝐴 → (((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
1514notbid 318 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐴 → (¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
16152rexbidv 3203 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐴 → (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
1712, 16imbi12d 344 . . . . . . . . . . . . . . 15 (𝑘 = 𝐴 → ((𝑘 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵)) ↔ (𝐴 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
1817rspcv 3587 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → (∀𝑘 ∈ ℕ (𝑘 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵)) → (𝐴 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
1911, 18mpan9 506 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
20 breq1 5113 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐵 → (𝑘 < 𝐴𝐵 < 𝐴))
21 breq2 5114 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝐵 → ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐵))
2221bibi1d 343 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝐵 → (((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ((𝑝𝑛) ∥ 𝐵 ↔ (𝑝𝑛) ∥ 𝐴)))
23 bicom 222 . . . . . . . . . . . . . . . . . . 19 (((𝑝𝑛) ∥ 𝐵 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))
2422, 23bitrdi 287 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝐵 → (((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
2524notbid 318 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐵 → (¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
26252rexbidv 3203 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐵 → (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴) ↔ ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
2720, 26imbi12d 344 . . . . . . . . . . . . . . 15 (𝑘 = 𝐵 → ((𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴)) ↔ (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
2827rspcv 3587 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → (∀𝑘 ∈ ℕ (𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴)) → (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))))
29 nn0prpwlem 36317 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → ∀𝑘 ∈ ℕ (𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴)))
3028, 29impel 505 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
3119, 30jaod 859 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 < 𝐵𝐵 < 𝐴) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
3210, 31sylbid 240 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
33 df-ne 2927 . . . . . . . . . . 11 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
34 rexnal2 3116 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵))
3532, 33, 343imtr3g 295 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (¬ 𝐴 = 𝐵 → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
3635con4d 115 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵))
3736ex 412 . . . . . . . 8 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
38 prmunb 16892 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → ∃𝑝 ∈ ℙ 𝐴 < 𝑝)
39 1nn 12204 . . . . . . . . . . . . . . 15 1 ∈ ℕ
40 prmz 16652 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
41 1nn0 12465 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
42 zexpcl 14048 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℤ ∧ 1 ∈ ℕ0) → (𝑝↑1) ∈ ℤ)
4340, 41, 42sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ ℙ → (𝑝↑1) ∈ ℤ)
44 dvds0 16248 . . . . . . . . . . . . . . . . . . 19 ((𝑝↑1) ∈ ℤ → (𝑝↑1) ∥ 0)
4543, 44syl 17 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → (𝑝↑1) ∥ 0)
46453ad2ant2 1134 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → (𝑝↑1) ∥ 0)
47 dvdsle 16287 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑝↑1) ∈ ℤ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ∥ 𝐴 → (𝑝↑1) ≤ 𝐴))
4843, 47sylan 580 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ∥ 𝐴 → (𝑝↑1) ≤ 𝐴))
49 prmnn 16651 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
50 nnre 12200 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ ℕ → 𝑝 ∈ ℝ)
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
52 reexpcl 14050 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℝ ∧ 1 ∈ ℕ0) → (𝑝↑1) ∈ ℝ)
5351, 41, 52sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ℙ → (𝑝↑1) ∈ ℝ)
54 lenlt 11259 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑝↑1) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑝↑1) ≤ 𝐴 ↔ ¬ 𝐴 < (𝑝↑1)))
5553, 6, 54syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ≤ 𝐴 ↔ ¬ 𝐴 < (𝑝↑1)))
5649nncnd 12209 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑝 ∈ ℙ → 𝑝 ∈ ℂ)
5756exp1d 14113 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ ℙ → (𝑝↑1) = 𝑝)
5857adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝↑1) = 𝑝)
5958breq2d 5122 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝐴 < (𝑝↑1) ↔ 𝐴 < 𝑝))
6059notbid 318 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (¬ 𝐴 < (𝑝↑1) ↔ ¬ 𝐴 < 𝑝))
6155, 60bitrd 279 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ≤ 𝐴 ↔ ¬ 𝐴 < 𝑝))
6248, 61sylibd 239 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ∥ 𝐴 → ¬ 𝐴 < 𝑝))
6362ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝↑1) ∥ 𝐴 → ¬ 𝐴 < 𝑝))
6463con2d 134 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐴 < 𝑝 → ¬ (𝑝↑1) ∥ 𝐴))
65643impia 1117 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ¬ (𝑝↑1) ∥ 𝐴)
6646, 65jcnd 163 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ¬ ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴))
67 biimpr 220 . . . . . . . . . . . . . . . 16 (((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0) → ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴))
6866, 67nsyl 140 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ¬ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0))
69 oveq2 7398 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → (𝑝𝑛) = (𝑝↑1))
7069breq1d 5120 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝↑1) ∥ 𝐴))
7169breq1d 5120 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → ((𝑝𝑛) ∥ 0 ↔ (𝑝↑1) ∥ 0))
7270, 71bibi12d 345 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) ↔ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0)))
7372notbid 318 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) ↔ ¬ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0)))
7473rspcev 3591 . . . . . . . . . . . . . . 15 ((1 ∈ ℕ ∧ ¬ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0)) → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
7539, 68, 74sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
76753expia 1121 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐴 < 𝑝 → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0)))
7776reximdva 3147 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (∃𝑝 ∈ ℙ 𝐴 < 𝑝 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0)))
7838, 77mpd 15 . . . . . . . . . . 11 (𝐴 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
79 rexnal2 3116 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) ↔ ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
8078, 79sylib 218 . . . . . . . . . 10 (𝐴 ∈ ℕ → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
8180pm2.21d 121 . . . . . . . . 9 (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) → 𝐴 = 0))
82 breq2 5114 . . . . . . . . . . . 12 (𝐵 = 0 → ((𝑝𝑛) ∥ 𝐵 ↔ (𝑝𝑛) ∥ 0))
8382bibi2d 342 . . . . . . . . . . 11 (𝐵 = 0 → (((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0)))
84832ralbidv 3202 . . . . . . . . . 10 (𝐵 = 0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0)))
85 eqeq2 2742 . . . . . . . . . 10 (𝐵 = 0 → (𝐴 = 𝐵𝐴 = 0))
8684, 85imbi12d 344 . . . . . . . . 9 (𝐵 = 0 → ((∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵) ↔ (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0) → 𝐴 = 0)))
8781, 86imbitrrid 246 . . . . . . . 8 (𝐵 = 0 → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
8837, 87jaoi 857 . . . . . . 7 ((𝐵 ∈ ℕ ∨ 𝐵 = 0) → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
895, 88sylbi 217 . . . . . 6 (𝐵 ∈ ℕ0 → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
9089com12 32 . . . . 5 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
91 orcom 870 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∨ 𝐵 = 0) ↔ (𝐵 = 0 ∨ 𝐵 ∈ ℕ))
92 df-or 848 . . . . . . . . . 10 ((𝐵 = 0 ∨ 𝐵 ∈ ℕ) ↔ (¬ 𝐵 = 0 → 𝐵 ∈ ℕ))
935, 91, 923bitri 297 . . . . . . . . 9 (𝐵 ∈ ℕ0 ↔ (¬ 𝐵 = 0 → 𝐵 ∈ ℕ))
94 prmunb 16892 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → ∃𝑝 ∈ ℙ 𝐵 < 𝑝)
95453ad2ant2 1134 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → (𝑝↑1) ∥ 0)
96 dvdsle 16287 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑝↑1) ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ∥ 𝐵 → (𝑝↑1) ≤ 𝐵))
9743, 96sylan 580 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ∥ 𝐵 → (𝑝↑1) ≤ 𝐵))
98 lenlt 11259 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑝↑1) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑝↑1) ≤ 𝐵 ↔ ¬ 𝐵 < (𝑝↑1)))
9953, 7, 98syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ≤ 𝐵 ↔ ¬ 𝐵 < (𝑝↑1)))
10057adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝑝↑1) = 𝑝)
101100breq2d 5122 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝐵 < (𝑝↑1) ↔ 𝐵 < 𝑝))
102101notbid 318 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (¬ 𝐵 < (𝑝↑1) ↔ ¬ 𝐵 < 𝑝))
10399, 102bitrd 279 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ≤ 𝐵 ↔ ¬ 𝐵 < 𝑝))
10497, 103sylibd 239 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ∥ 𝐵 → ¬ 𝐵 < 𝑝))
105104ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝↑1) ∥ 𝐵 → ¬ 𝐵 < 𝑝))
106105con2d 134 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐵 < 𝑝 → ¬ (𝑝↑1) ∥ 𝐵))
1071063impia 1117 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ¬ (𝑝↑1) ∥ 𝐵)
10895, 107jcnd 163 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ¬ ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵))
109 biimp 215 . . . . . . . . . . . . . . . 16 (((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵) → ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵))
110108, 109nsyl 140 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ¬ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵))
11169breq1d 5120 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → ((𝑝𝑛) ∥ 𝐵 ↔ (𝑝↑1) ∥ 𝐵))
11271, 111bibi12d 345 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵)))
113112notbid 318 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ¬ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵)))
114113rspcev 3591 . . . . . . . . . . . . . . 15 ((1 ∈ ℕ ∧ ¬ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵)) → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
11539, 110, 114sylancr 587 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
1161153expia 1121 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐵 < 𝑝 → ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
117116reximdva 3147 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (∃𝑝 ∈ ℙ 𝐵 < 𝑝 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
11894, 117mpd 15 . . . . . . . . . . 11 (𝐵 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
119 rexnal2 3116 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
120118, 119sylib 218 . . . . . . . . . 10 (𝐵 ∈ ℕ → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵))
121120imim2i 16 . . . . . . . . 9 ((¬ 𝐵 = 0 → 𝐵 ∈ ℕ) → (¬ 𝐵 = 0 → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
12293, 121sylbi 217 . . . . . . . 8 (𝐵 ∈ ℕ0 → (¬ 𝐵 = 0 → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
123122con4d 115 . . . . . . 7 (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐵 = 0))
124 eqcom 2737 . . . . . . 7 (𝐵 = 0 ↔ 0 = 𝐵)
125123, 124imbitrdi 251 . . . . . 6 (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) → 0 = 𝐵))
126 breq2 5114 . . . . . . . . 9 (𝐴 = 0 → ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 0))
127126bibi1d 343 . . . . . . . 8 (𝐴 = 0 → (((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
1281272ralbidv 3202 . . . . . . 7 (𝐴 = 0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵)))
129 eqeq1 2734 . . . . . . 7 (𝐴 = 0 → (𝐴 = 𝐵 ↔ 0 = 𝐵))
130128, 129imbi12d 344 . . . . . 6 (𝐴 = 0 → ((∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵) ↔ (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 0 ↔ (𝑝𝑛) ∥ 𝐵) → 0 = 𝐵)))
131125, 130imbitrrid 246 . . . . 5 (𝐴 = 0 → (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
13290, 131jaoi 857 . . . 4 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐵 ∈ ℕ0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵)))
133132imp 406 . . 3 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ 𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵))
1344, 133sylanb 581 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵) → 𝐴 = 𝐵))
1353, 134impbid2 226 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054   class class class wbr 5110  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   < clt 11215  cle 11216  cn 12193  0cn0 12449  cz 12536  cexp 14033  cdvds 16229  cprime 16648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator