Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unblimceq0 Structured version   Visualization version   GIF version

Theorem unblimceq0 36495
Description: If 𝐹 is unbounded near 𝐴 it has no limit at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unblimceq0.0 (𝜑𝑆 ⊆ ℂ)
unblimceq0.1 (𝜑𝐹:𝑆⟶ℂ)
unblimceq0.2 (𝜑𝐴 ∈ ℂ)
unblimceq0.3 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
Assertion
Ref Expression
unblimceq0 (𝜑 → (𝐹 lim 𝐴) = ∅)
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥   𝐹,𝑏,𝑑,𝑥   𝑆,𝑏,𝑑,𝑥   𝜑,𝑏,𝑑,𝑥

Proof of Theorem unblimceq0
Dummy variables 𝑎 𝑐 𝑦 𝑧 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 12955 . . . . . . . 8 1 ∈ ℝ+
21a1i 11 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → 1 ∈ ℝ+)
3 breq2 5111 . . . . . . . . . . 11 (𝑒 = 1 → ((abs‘((𝐹𝑧) − 𝑦)) < 𝑒 ↔ (abs‘((𝐹𝑧) − 𝑦)) < 1))
43imbi2d 340 . . . . . . . . . 10 (𝑒 = 1 → (((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒) ↔ ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1)))
54rexralbidv 3203 . . . . . . . . 9 (𝑒 = 1 → (∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒) ↔ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1)))
65notbid 318 . . . . . . . 8 (𝑒 = 1 → (¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1)))
76adantl 481 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑒 = 1) → (¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1)))
8 simprr1 1222 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 𝑧𝐴)
9 simprr2 1223 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (abs‘(𝑧𝐴)) < 𝑐)
108, 9jca 511 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐))
11 1red 11175 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 1 ∈ ℝ)
12 unblimceq0.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑆⟶ℂ)
1312ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝐹:𝑆⟶ℂ)
1413adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 𝐹:𝑆⟶ℂ)
15 simprl 770 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 𝑧𝑆)
1614, 15ffvelcdmd 7057 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (𝐹𝑧) ∈ ℂ)
17 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝑦 ∈ ℂ)
1817adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 𝑦 ∈ ℂ)
1916, 18subcld 11533 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ((𝐹𝑧) − 𝑦) ∈ ℂ)
2019abscld 15405 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (abs‘((𝐹𝑧) − 𝑦)) ∈ ℝ)
2116abscld 15405 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (abs‘(𝐹𝑧)) ∈ ℝ)
2217abscld 15405 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → (abs‘𝑦) ∈ ℝ)
2322adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (abs‘𝑦) ∈ ℝ)
2421, 23resubcld 11606 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ((abs‘(𝐹𝑧)) − (abs‘𝑦)) ∈ ℝ)
25 1cnd 11169 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 1 ∈ ℂ)
2623recnd 11202 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (abs‘𝑦) ∈ ℂ)
2725, 26pncand 11534 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ((1 + (abs‘𝑦)) − (abs‘𝑦)) = 1)
28 1red 11175 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 1 ∈ ℝ)
2928, 22readdcld 11203 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → (1 + (abs‘𝑦)) ∈ ℝ)
3029adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (1 + (abs‘𝑦)) ∈ ℝ)
31 simprr3 1224 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))
3230, 21, 23, 31lesub1dd 11794 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ((1 + (abs‘𝑦)) − (abs‘𝑦)) ≤ ((abs‘(𝐹𝑧)) − (abs‘𝑦)))
3327, 32eqbrtrrd 5131 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 1 ≤ ((abs‘(𝐹𝑧)) − (abs‘𝑦)))
3416, 18abs2difd 15426 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ((abs‘(𝐹𝑧)) − (abs‘𝑦)) ≤ (abs‘((𝐹𝑧) − 𝑦)))
3511, 24, 20, 33, 34letrd 11331 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 1 ≤ (abs‘((𝐹𝑧) − 𝑦)))
3611, 20, 35lensymd 11325 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ¬ (abs‘((𝐹𝑧) − 𝑦)) < 1)
3710, 36jcnd 163 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ¬ ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1))
38 breq2 5111 . . . . . . . . . . . . 13 (𝑑 = 𝑐 → ((abs‘(𝑧𝐴)) < 𝑑 ↔ (abs‘(𝑧𝐴)) < 𝑐))
39383anbi2d 1443 . . . . . . . . . . . 12 (𝑑 = 𝑐 → ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))) ↔ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))))
4039rexbidv 3157 . . . . . . . . . . 11 (𝑑 = 𝑐 → (∃𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))) ↔ ∃𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))))
41 breq1 5110 . . . . . . . . . . . . . . 15 (𝑎 = (1 + (abs‘𝑦)) → (𝑎 ≤ (abs‘(𝐹𝑧)) ↔ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))
42413anbi3d 1444 . . . . . . . . . . . . . 14 (𝑎 = (1 + (abs‘𝑦)) → ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑𝑎 ≤ (abs‘(𝐹𝑧))) ↔ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))))
4342rexbidv 3157 . . . . . . . . . . . . 13 (𝑎 = (1 + (abs‘𝑦)) → (∃𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑𝑎 ≤ (abs‘(𝐹𝑧))) ↔ ∃𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))))
4443ralbidv 3156 . . . . . . . . . . . 12 (𝑎 = (1 + (abs‘𝑦)) → (∀𝑑 ∈ ℝ+𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑𝑎 ≤ (abs‘(𝐹𝑧))) ↔ ∀𝑑 ∈ ℝ+𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))))
45 unblimceq0.0 . . . . . . . . . . . . . 14 (𝜑𝑆 ⊆ ℂ)
46 unblimceq0.2 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
47 unblimceq0.3 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
4845, 12, 46, 47unblimceq0lem 36494 . . . . . . . . . . . . 13 (𝜑 → ∀𝑎 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑𝑎 ≤ (abs‘(𝐹𝑧))))
4948ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ∀𝑎 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑𝑎 ≤ (abs‘(𝐹𝑧))))
50 0lt1 11700 . . . . . . . . . . . . . . 15 0 < 1
5150a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 < 1)
5217absge0d 15413 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 ≤ (abs‘𝑦))
5328, 22, 51, 52addgtge0d 11752 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 < (1 + (abs‘𝑦)))
5429, 53elrpd 12992 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → (1 + (abs‘𝑦)) ∈ ℝ+)
5544, 49, 54rspcdva 3589 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ∀𝑑 ∈ ℝ+𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))
56 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝑐 ∈ ℝ+)
5740, 55, 56rspcdva 3589 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ∃𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))
5837, 57reximddv 3149 . . . . . . . . 9 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ∃𝑧𝑆 ¬ ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1))
59 rexnal 3082 . . . . . . . . 9 (∃𝑧𝑆 ¬ ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1) ↔ ¬ ∀𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1))
6058, 59sylib 218 . . . . . . . 8 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ¬ ∀𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1))
6160nrexdv 3128 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → ¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1))
622, 7, 61rspcedvd 3590 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → ∃𝑒 ∈ ℝ+ ¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))
63 rexnal 3082 . . . . . 6 (∃𝑒 ∈ ℝ+ ¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))
6462, 63sylib 218 . . . . 5 ((𝜑𝑦 ∈ ℂ) → ¬ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))
6564ex 412 . . . 4 (𝜑 → (𝑦 ∈ ℂ → ¬ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
66 imnan 399 . . . 4 ((𝑦 ∈ ℂ → ¬ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)) ↔ ¬ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
6765, 66sylib 218 . . 3 (𝜑 → ¬ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
6812, 45, 46ellimc3 25780 . . 3 (𝜑 → (𝑦 ∈ (𝐹 lim 𝐴) ↔ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))))
6967, 68mtbird 325 . 2 (𝜑 → ¬ 𝑦 ∈ (𝐹 lim 𝐴))
7069eq0rdv 4370 1 (𝜑 → (𝐹 lim 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  c0 4296   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  +crp 12951  abscabs 15200   lim climc 25763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-rest 17385  df-topn 17386  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cnp 23115  df-xms 24208  df-ms 24209  df-limc 25767
This theorem is referenced by:  unbdqndv1  36496
  Copyright terms: Public domain W3C validator