Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unblimceq0 Structured version   Visualization version   GIF version

Theorem unblimceq0 36473
Description: If 𝐹 is unbounded near 𝐴 it has no limit at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unblimceq0.0 (𝜑𝑆 ⊆ ℂ)
unblimceq0.1 (𝜑𝐹:𝑆⟶ℂ)
unblimceq0.2 (𝜑𝐴 ∈ ℂ)
unblimceq0.3 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
Assertion
Ref Expression
unblimceq0 (𝜑 → (𝐹 lim 𝐴) = ∅)
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥   𝐹,𝑏,𝑑,𝑥   𝑆,𝑏,𝑑,𝑥   𝜑,𝑏,𝑑,𝑥

Proof of Theorem unblimceq0
Dummy variables 𝑎 𝑐 𝑦 𝑧 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 13061 . . . . . . . 8 1 ∈ ℝ+
21a1i 11 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → 1 ∈ ℝ+)
3 breq2 5170 . . . . . . . . . . 11 (𝑒 = 1 → ((abs‘((𝐹𝑧) − 𝑦)) < 𝑒 ↔ (abs‘((𝐹𝑧) − 𝑦)) < 1))
43imbi2d 340 . . . . . . . . . 10 (𝑒 = 1 → (((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒) ↔ ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1)))
54rexralbidv 3229 . . . . . . . . 9 (𝑒 = 1 → (∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒) ↔ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1)))
65notbid 318 . . . . . . . 8 (𝑒 = 1 → (¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1)))
76adantl 481 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑒 = 1) → (¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1)))
8 simprr1 1221 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 𝑧𝐴)
9 simprr2 1222 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (abs‘(𝑧𝐴)) < 𝑐)
108, 9jca 511 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐))
11 1red 11291 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 1 ∈ ℝ)
12 unblimceq0.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑆⟶ℂ)
1312ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝐹:𝑆⟶ℂ)
1413adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 𝐹:𝑆⟶ℂ)
15 simprl 770 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 𝑧𝑆)
1614, 15ffvelcdmd 7119 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (𝐹𝑧) ∈ ℂ)
17 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝑦 ∈ ℂ)
1817adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 𝑦 ∈ ℂ)
1916, 18subcld 11647 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ((𝐹𝑧) − 𝑦) ∈ ℂ)
2019abscld 15485 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (abs‘((𝐹𝑧) − 𝑦)) ∈ ℝ)
2116abscld 15485 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (abs‘(𝐹𝑧)) ∈ ℝ)
2217abscld 15485 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → (abs‘𝑦) ∈ ℝ)
2322adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (abs‘𝑦) ∈ ℝ)
2421, 23resubcld 11718 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ((abs‘(𝐹𝑧)) − (abs‘𝑦)) ∈ ℝ)
25 1cnd 11285 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 1 ∈ ℂ)
2623recnd 11318 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (abs‘𝑦) ∈ ℂ)
2725, 26pncand 11648 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ((1 + (abs‘𝑦)) − (abs‘𝑦)) = 1)
28 1red 11291 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 1 ∈ ℝ)
2928, 22readdcld 11319 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → (1 + (abs‘𝑦)) ∈ ℝ)
3029adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (1 + (abs‘𝑦)) ∈ ℝ)
31 simprr3 1223 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))
3230, 21, 23, 31lesub1dd 11906 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ((1 + (abs‘𝑦)) − (abs‘𝑦)) ≤ ((abs‘(𝐹𝑧)) − (abs‘𝑦)))
3327, 32eqbrtrrd 5190 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 1 ≤ ((abs‘(𝐹𝑧)) − (abs‘𝑦)))
3416, 18abs2difd 15506 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ((abs‘(𝐹𝑧)) − (abs‘𝑦)) ≤ (abs‘((𝐹𝑧) − 𝑦)))
3511, 24, 20, 33, 34letrd 11447 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 1 ≤ (abs‘((𝐹𝑧) − 𝑦)))
3611, 20, 35lensymd 11441 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ¬ (abs‘((𝐹𝑧) − 𝑦)) < 1)
3710, 36jcnd 163 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ¬ ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1))
38 breq2 5170 . . . . . . . . . . . . 13 (𝑑 = 𝑐 → ((abs‘(𝑧𝐴)) < 𝑑 ↔ (abs‘(𝑧𝐴)) < 𝑐))
39383anbi2d 1441 . . . . . . . . . . . 12 (𝑑 = 𝑐 → ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))) ↔ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))))
4039rexbidv 3185 . . . . . . . . . . 11 (𝑑 = 𝑐 → (∃𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))) ↔ ∃𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))))
41 breq1 5169 . . . . . . . . . . . . . . 15 (𝑎 = (1 + (abs‘𝑦)) → (𝑎 ≤ (abs‘(𝐹𝑧)) ↔ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))
42413anbi3d 1442 . . . . . . . . . . . . . 14 (𝑎 = (1 + (abs‘𝑦)) → ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑𝑎 ≤ (abs‘(𝐹𝑧))) ↔ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))))
4342rexbidv 3185 . . . . . . . . . . . . 13 (𝑎 = (1 + (abs‘𝑦)) → (∃𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑𝑎 ≤ (abs‘(𝐹𝑧))) ↔ ∃𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))))
4443ralbidv 3184 . . . . . . . . . . . 12 (𝑎 = (1 + (abs‘𝑦)) → (∀𝑑 ∈ ℝ+𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑𝑎 ≤ (abs‘(𝐹𝑧))) ↔ ∀𝑑 ∈ ℝ+𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))))
45 unblimceq0.0 . . . . . . . . . . . . . 14 (𝜑𝑆 ⊆ ℂ)
46 unblimceq0.2 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
47 unblimceq0.3 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
4845, 12, 46, 47unblimceq0lem 36472 . . . . . . . . . . . . 13 (𝜑 → ∀𝑎 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑𝑎 ≤ (abs‘(𝐹𝑧))))
4948ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ∀𝑎 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑𝑎 ≤ (abs‘(𝐹𝑧))))
50 0lt1 11812 . . . . . . . . . . . . . . 15 0 < 1
5150a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 < 1)
5217absge0d 15493 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 ≤ (abs‘𝑦))
5328, 22, 51, 52addgtge0d 11864 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 < (1 + (abs‘𝑦)))
5429, 53elrpd 13096 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → (1 + (abs‘𝑦)) ∈ ℝ+)
5544, 49, 54rspcdva 3636 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ∀𝑑 ∈ ℝ+𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))
56 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝑐 ∈ ℝ+)
5740, 55, 56rspcdva 3636 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ∃𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))
5837, 57reximddv 3177 . . . . . . . . 9 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ∃𝑧𝑆 ¬ ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1))
59 rexnal 3106 . . . . . . . . 9 (∃𝑧𝑆 ¬ ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1) ↔ ¬ ∀𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1))
6058, 59sylib 218 . . . . . . . 8 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ¬ ∀𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1))
6160nrexdv 3155 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → ¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1))
622, 7, 61rspcedvd 3637 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → ∃𝑒 ∈ ℝ+ ¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))
63 rexnal 3106 . . . . . 6 (∃𝑒 ∈ ℝ+ ¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))
6462, 63sylib 218 . . . . 5 ((𝜑𝑦 ∈ ℂ) → ¬ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))
6564ex 412 . . . 4 (𝜑 → (𝑦 ∈ ℂ → ¬ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
66 imnan 399 . . . 4 ((𝑦 ∈ ℂ → ¬ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)) ↔ ¬ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
6765, 66sylib 218 . . 3 (𝜑 → ¬ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
6812, 45, 46ellimc3 25934 . . 3 (𝜑 → (𝑦 ∈ (𝐹 lim 𝐴) ↔ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))))
6967, 68mtbird 325 . 2 (𝜑 → ¬ 𝑦 ∈ (𝐹 lim 𝐴))
7069eq0rdv 4430 1 (𝜑 → (𝐹 lim 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  +crp 13057  abscabs 15283   lim climc 25917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cnp 23257  df-xms 24351  df-ms 24352  df-limc 25921
This theorem is referenced by:  unbdqndv1  36474
  Copyright terms: Public domain W3C validator