Step | Hyp | Ref
| Expression |
1 | | 1rp 12663 |
. . . . . . . 8
⊢ 1 ∈
ℝ+ |
2 | 1 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 1 ∈
ℝ+) |
3 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑒 = 1 → ((abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒 ↔ (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
4 | 3 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑒 = 1 → (((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒) ↔ ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1))) |
5 | 4 | rexralbidv 3229 |
. . . . . . . . 9
⊢ (𝑒 = 1 → (∃𝑐 ∈ ℝ+
∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒) ↔ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1))) |
6 | 5 | notbid 317 |
. . . . . . . 8
⊢ (𝑒 = 1 → (¬ ∃𝑐 ∈ ℝ+
∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1))) |
7 | 6 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑒 = 1) → (¬ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1))) |
8 | | simprr1 1219 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 𝑧 ≠ 𝐴) |
9 | | simprr2 1220 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (abs‘(𝑧 − 𝐴)) < 𝑐) |
10 | 8, 9 | jca 511 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐)) |
11 | | 1red 10907 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 1 ∈
ℝ) |
12 | | unblimceq0.1 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
13 | 12 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝐹:𝑆⟶ℂ) |
14 | 13 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 𝐹:𝑆⟶ℂ) |
15 | | simprl 767 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 𝑧 ∈ 𝑆) |
16 | 14, 15 | ffvelrnd 6944 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (𝐹‘𝑧) ∈ ℂ) |
17 | | simplr 765 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝑦 ∈
ℂ) |
18 | 17 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 𝑦 ∈ ℂ) |
19 | 16, 18 | subcld 11262 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((𝐹‘𝑧) − 𝑦) ∈ ℂ) |
20 | 19 | abscld 15076 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (abs‘((𝐹‘𝑧) − 𝑦)) ∈ ℝ) |
21 | 16 | abscld 15076 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (abs‘(𝐹‘𝑧)) ∈ ℝ) |
22 | 17 | abscld 15076 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) →
(abs‘𝑦) ∈
ℝ) |
23 | 22 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (abs‘𝑦) ∈ ℝ) |
24 | 21, 23 | resubcld 11333 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((abs‘(𝐹‘𝑧)) − (abs‘𝑦)) ∈ ℝ) |
25 | | 1cnd 10901 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 1 ∈
ℂ) |
26 | 23 | recnd 10934 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (abs‘𝑦) ∈ ℂ) |
27 | 25, 26 | pncand 11263 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((1 + (abs‘𝑦)) − (abs‘𝑦)) = 1) |
28 | | 1red 10907 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 1 ∈
ℝ) |
29 | 28, 22 | readdcld 10935 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → (1 +
(abs‘𝑦)) ∈
ℝ) |
30 | 29 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (1 + (abs‘𝑦)) ∈
ℝ) |
31 | | simprr3 1221 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))) |
32 | 30, 21, 23, 31 | lesub1dd 11521 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((1 + (abs‘𝑦)) − (abs‘𝑦)) ≤ ((abs‘(𝐹‘𝑧)) − (abs‘𝑦))) |
33 | 27, 32 | eqbrtrrd 5094 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 1 ≤ ((abs‘(𝐹‘𝑧)) − (abs‘𝑦))) |
34 | 16, 18 | abs2difd 15097 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((abs‘(𝐹‘𝑧)) − (abs‘𝑦)) ≤ (abs‘((𝐹‘𝑧) − 𝑦))) |
35 | 11, 24, 20, 33, 34 | letrd 11062 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 1 ≤ (abs‘((𝐹‘𝑧) − 𝑦))) |
36 | 11, 20, 35 | lensymd 11056 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ¬ (abs‘((𝐹‘𝑧) − 𝑦)) < 1) |
37 | 10, 36 | jcnd 163 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ¬ ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
38 | | breq2 5074 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑐 → ((abs‘(𝑧 − 𝐴)) < 𝑑 ↔ (abs‘(𝑧 − 𝐴)) < 𝑐)) |
39 | 38 | 3anbi2d 1439 |
. . . . . . . . . . . 12
⊢ (𝑑 = 𝑐 → ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))) ↔ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) |
40 | 39 | rexbidv 3225 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑐 → (∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))) ↔ ∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) |
41 | | breq1 5073 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = (1 + (abs‘𝑦)) → (𝑎 ≤ (abs‘(𝐹‘𝑧)) ↔ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧)))) |
42 | 41 | 3anbi3d 1440 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (1 + (abs‘𝑦)) → ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ 𝑎 ≤ (abs‘(𝐹‘𝑧))) ↔ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) |
43 | 42 | rexbidv 3225 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (1 + (abs‘𝑦)) → (∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ 𝑎 ≤ (abs‘(𝐹‘𝑧))) ↔ ∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) |
44 | 43 | ralbidv 3120 |
. . . . . . . . . . . 12
⊢ (𝑎 = (1 + (abs‘𝑦)) → (∀𝑑 ∈ ℝ+
∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ 𝑎 ≤ (abs‘(𝐹‘𝑧))) ↔ ∀𝑑 ∈ ℝ+ ∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) |
45 | | unblimceq0.0 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
46 | | unblimceq0.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ ℂ) |
47 | | unblimceq0.3 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+
∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐹‘𝑥)))) |
48 | 45, 12, 46, 47 | unblimceq0lem 34613 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑎 ∈ ℝ+ ∀𝑑 ∈ ℝ+
∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ 𝑎 ≤ (abs‘(𝐹‘𝑧)))) |
49 | 48 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) →
∀𝑎 ∈
ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ 𝑎 ≤ (abs‘(𝐹‘𝑧)))) |
50 | | 0lt1 11427 |
. . . . . . . . . . . . . . 15
⊢ 0 <
1 |
51 | 50 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 <
1) |
52 | 17 | absge0d 15084 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 ≤
(abs‘𝑦)) |
53 | 28, 22, 51, 52 | addgtge0d 11479 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 < (1
+ (abs‘𝑦))) |
54 | 29, 53 | elrpd 12698 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → (1 +
(abs‘𝑦)) ∈
ℝ+) |
55 | 44, 49, 54 | rspcdva 3554 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) →
∀𝑑 ∈
ℝ+ ∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧)))) |
56 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝑐 ∈
ℝ+) |
57 | 40, 55, 56 | rspcdva 3554 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) →
∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧)))) |
58 | 37, 57 | reximddv 3203 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) →
∃𝑧 ∈ 𝑆 ¬ ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
59 | | rexnal 3165 |
. . . . . . . . 9
⊢
(∃𝑧 ∈
𝑆 ¬ ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1) ↔ ¬ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
60 | 58, 59 | sylib 217 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ¬
∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
61 | 60 | nrexdv 3197 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ¬ ∃𝑐 ∈ ℝ+
∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
62 | 2, 7, 61 | rspcedvd 3555 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ∃𝑒 ∈ ℝ+
¬ ∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)) |
63 | | rexnal 3165 |
. . . . . 6
⊢
(∃𝑒 ∈
ℝ+ ¬ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∀𝑒 ∈ ℝ+ ∃𝑐 ∈ ℝ+
∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)) |
64 | 62, 63 | sylib 217 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ¬ ∀𝑒 ∈ ℝ+
∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)) |
65 | 64 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ ℂ → ¬ ∀𝑒 ∈ ℝ+
∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
66 | | imnan 399 |
. . . 4
⊢ ((𝑦 ∈ ℂ → ¬
∀𝑒 ∈
ℝ+ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)) ↔ ¬ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
67 | 65, 66 | sylib 217 |
. . 3
⊢ (𝜑 → ¬ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
68 | 12, 45, 46 | ellimc3 24948 |
. . 3
⊢ (𝜑 → (𝑦 ∈ (𝐹 limℂ 𝐴) ↔ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))) |
69 | 67, 68 | mtbird 324 |
. 2
⊢ (𝜑 → ¬ 𝑦 ∈ (𝐹 limℂ 𝐴)) |
70 | 69 | eq0rdv 4335 |
1
⊢ (𝜑 → (𝐹 limℂ 𝐴) = ∅) |