Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unblimceq0 Structured version   Visualization version   GIF version

Theorem unblimceq0 34970
Description: If 𝐹 is unbounded near 𝐴 it has no limit at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unblimceq0.0 (𝜑𝑆 ⊆ ℂ)
unblimceq0.1 (𝜑𝐹:𝑆⟶ℂ)
unblimceq0.2 (𝜑𝐴 ∈ ℂ)
unblimceq0.3 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
Assertion
Ref Expression
unblimceq0 (𝜑 → (𝐹 lim 𝐴) = ∅)
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥   𝐹,𝑏,𝑑,𝑥   𝑆,𝑏,𝑑,𝑥   𝜑,𝑏,𝑑,𝑥

Proof of Theorem unblimceq0
Dummy variables 𝑎 𝑐 𝑦 𝑧 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 12919 . . . . . . . 8 1 ∈ ℝ+
21a1i 11 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → 1 ∈ ℝ+)
3 breq2 5109 . . . . . . . . . . 11 (𝑒 = 1 → ((abs‘((𝐹𝑧) − 𝑦)) < 𝑒 ↔ (abs‘((𝐹𝑧) − 𝑦)) < 1))
43imbi2d 340 . . . . . . . . . 10 (𝑒 = 1 → (((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒) ↔ ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1)))
54rexralbidv 3214 . . . . . . . . 9 (𝑒 = 1 → (∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒) ↔ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1)))
65notbid 317 . . . . . . . 8 (𝑒 = 1 → (¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1)))
76adantl 482 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑒 = 1) → (¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1)))
8 simprr1 1221 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 𝑧𝐴)
9 simprr2 1222 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (abs‘(𝑧𝐴)) < 𝑐)
108, 9jca 512 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐))
11 1red 11156 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 1 ∈ ℝ)
12 unblimceq0.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑆⟶ℂ)
1312ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝐹:𝑆⟶ℂ)
1413adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 𝐹:𝑆⟶ℂ)
15 simprl 769 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 𝑧𝑆)
1614, 15ffvelcdmd 7036 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (𝐹𝑧) ∈ ℂ)
17 simplr 767 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝑦 ∈ ℂ)
1817adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 𝑦 ∈ ℂ)
1916, 18subcld 11512 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ((𝐹𝑧) − 𝑦) ∈ ℂ)
2019abscld 15321 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (abs‘((𝐹𝑧) − 𝑦)) ∈ ℝ)
2116abscld 15321 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (abs‘(𝐹𝑧)) ∈ ℝ)
2217abscld 15321 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → (abs‘𝑦) ∈ ℝ)
2322adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (abs‘𝑦) ∈ ℝ)
2421, 23resubcld 11583 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ((abs‘(𝐹𝑧)) − (abs‘𝑦)) ∈ ℝ)
25 1cnd 11150 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 1 ∈ ℂ)
2623recnd 11183 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (abs‘𝑦) ∈ ℂ)
2725, 26pncand 11513 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ((1 + (abs‘𝑦)) − (abs‘𝑦)) = 1)
28 1red 11156 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 1 ∈ ℝ)
2928, 22readdcld 11184 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → (1 + (abs‘𝑦)) ∈ ℝ)
3029adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (1 + (abs‘𝑦)) ∈ ℝ)
31 simprr3 1223 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))
3230, 21, 23, 31lesub1dd 11771 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ((1 + (abs‘𝑦)) − (abs‘𝑦)) ≤ ((abs‘(𝐹𝑧)) − (abs‘𝑦)))
3327, 32eqbrtrrd 5129 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 1 ≤ ((abs‘(𝐹𝑧)) − (abs‘𝑦)))
3416, 18abs2difd 15342 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ((abs‘(𝐹𝑧)) − (abs‘𝑦)) ≤ (abs‘((𝐹𝑧) − 𝑦)))
3511, 24, 20, 33, 34letrd 11312 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → 1 ≤ (abs‘((𝐹𝑧) − 𝑦)))
3611, 20, 35lensymd 11306 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ¬ (abs‘((𝐹𝑧) − 𝑦)) < 1)
3710, 36jcnd 163 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧𝑆 ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))) → ¬ ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1))
38 breq2 5109 . . . . . . . . . . . . 13 (𝑑 = 𝑐 → ((abs‘(𝑧𝐴)) < 𝑑 ↔ (abs‘(𝑧𝐴)) < 𝑐))
39383anbi2d 1441 . . . . . . . . . . . 12 (𝑑 = 𝑐 → ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))) ↔ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))))
4039rexbidv 3175 . . . . . . . . . . 11 (𝑑 = 𝑐 → (∃𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))) ↔ ∃𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))))
41 breq1 5108 . . . . . . . . . . . . . . 15 (𝑎 = (1 + (abs‘𝑦)) → (𝑎 ≤ (abs‘(𝐹𝑧)) ↔ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))
42413anbi3d 1442 . . . . . . . . . . . . . 14 (𝑎 = (1 + (abs‘𝑦)) → ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑𝑎 ≤ (abs‘(𝐹𝑧))) ↔ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))))
4342rexbidv 3175 . . . . . . . . . . . . 13 (𝑎 = (1 + (abs‘𝑦)) → (∃𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑𝑎 ≤ (abs‘(𝐹𝑧))) ↔ ∃𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))))
4443ralbidv 3174 . . . . . . . . . . . 12 (𝑎 = (1 + (abs‘𝑦)) → (∀𝑑 ∈ ℝ+𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑𝑎 ≤ (abs‘(𝐹𝑧))) ↔ ∀𝑑 ∈ ℝ+𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧)))))
45 unblimceq0.0 . . . . . . . . . . . . . 14 (𝜑𝑆 ⊆ ℂ)
46 unblimceq0.2 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
47 unblimceq0.3 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
4845, 12, 46, 47unblimceq0lem 34969 . . . . . . . . . . . . 13 (𝜑 → ∀𝑎 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑𝑎 ≤ (abs‘(𝐹𝑧))))
4948ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ∀𝑎 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑𝑎 ≤ (abs‘(𝐹𝑧))))
50 0lt1 11677 . . . . . . . . . . . . . . 15 0 < 1
5150a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 < 1)
5217absge0d 15329 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 ≤ (abs‘𝑦))
5328, 22, 51, 52addgtge0d 11729 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 < (1 + (abs‘𝑦)))
5429, 53elrpd 12954 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → (1 + (abs‘𝑦)) ∈ ℝ+)
5544, 49, 54rspcdva 3582 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ∀𝑑 ∈ ℝ+𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))
56 simpr 485 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝑐 ∈ ℝ+)
5740, 55, 56rspcdva 3582 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ∃𝑧𝑆 (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹𝑧))))
5837, 57reximddv 3168 . . . . . . . . 9 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ∃𝑧𝑆 ¬ ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1))
59 rexnal 3103 . . . . . . . . 9 (∃𝑧𝑆 ¬ ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1) ↔ ¬ ∀𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1))
6058, 59sylib 217 . . . . . . . 8 (((𝜑𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ¬ ∀𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1))
6160nrexdv 3146 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → ¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 1))
622, 7, 61rspcedvd 3583 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → ∃𝑒 ∈ ℝ+ ¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))
63 rexnal 3103 . . . . . 6 (∃𝑒 ∈ ℝ+ ¬ ∃𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))
6462, 63sylib 217 . . . . 5 ((𝜑𝑦 ∈ ℂ) → ¬ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))
6564ex 413 . . . 4 (𝜑 → (𝑦 ∈ ℂ → ¬ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
66 imnan 400 . . . 4 ((𝑦 ∈ ℂ → ¬ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)) ↔ ¬ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
6765, 66sylib 217 . . 3 (𝜑 → ¬ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
6812, 45, 46ellimc3 25243 . . 3 (𝜑 → (𝑦 ∈ (𝐹 lim 𝐴) ↔ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ+𝑧𝑆 ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑐) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))))
6967, 68mtbird 324 . 2 (𝜑 → ¬ 𝑦 ∈ (𝐹 lim 𝐴))
7069eq0rdv 4364 1 (𝜑 → (𝐹 lim 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  wss 3910  c0 4282   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  +crp 12915  abscabs 15119   lim climc 25226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-topn 17305  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cnp 22579  df-xms 23673  df-ms 23674  df-limc 25230
This theorem is referenced by:  unbdqndv1  34971
  Copyright terms: Public domain W3C validator