| Step | Hyp | Ref
| Expression |
| 1 | | 1rp 13038 |
. . . . . . . 8
⊢ 1 ∈
ℝ+ |
| 2 | 1 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 1 ∈
ℝ+) |
| 3 | | breq2 5147 |
. . . . . . . . . . 11
⊢ (𝑒 = 1 → ((abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒 ↔ (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 4 | 3 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑒 = 1 → (((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒) ↔ ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1))) |
| 5 | 4 | rexralbidv 3223 |
. . . . . . . . 9
⊢ (𝑒 = 1 → (∃𝑐 ∈ ℝ+
∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒) ↔ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1))) |
| 6 | 5 | notbid 318 |
. . . . . . . 8
⊢ (𝑒 = 1 → (¬ ∃𝑐 ∈ ℝ+
∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1))) |
| 7 | 6 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑒 = 1) → (¬ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1))) |
| 8 | | simprr1 1222 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 𝑧 ≠ 𝐴) |
| 9 | | simprr2 1223 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (abs‘(𝑧 − 𝐴)) < 𝑐) |
| 10 | 8, 9 | jca 511 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐)) |
| 11 | | 1red 11262 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 1 ∈
ℝ) |
| 12 | | unblimceq0.1 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
| 13 | 12 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝐹:𝑆⟶ℂ) |
| 14 | 13 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 𝐹:𝑆⟶ℂ) |
| 15 | | simprl 771 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 𝑧 ∈ 𝑆) |
| 16 | 14, 15 | ffvelcdmd 7105 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (𝐹‘𝑧) ∈ ℂ) |
| 17 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝑦 ∈
ℂ) |
| 18 | 17 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 𝑦 ∈ ℂ) |
| 19 | 16, 18 | subcld 11620 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((𝐹‘𝑧) − 𝑦) ∈ ℂ) |
| 20 | 19 | abscld 15475 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (abs‘((𝐹‘𝑧) − 𝑦)) ∈ ℝ) |
| 21 | 16 | abscld 15475 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (abs‘(𝐹‘𝑧)) ∈ ℝ) |
| 22 | 17 | abscld 15475 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) →
(abs‘𝑦) ∈
ℝ) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (abs‘𝑦) ∈ ℝ) |
| 24 | 21, 23 | resubcld 11691 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((abs‘(𝐹‘𝑧)) − (abs‘𝑦)) ∈ ℝ) |
| 25 | | 1cnd 11256 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 1 ∈
ℂ) |
| 26 | 23 | recnd 11289 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (abs‘𝑦) ∈ ℂ) |
| 27 | 25, 26 | pncand 11621 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((1 + (abs‘𝑦)) − (abs‘𝑦)) = 1) |
| 28 | | 1red 11262 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 1 ∈
ℝ) |
| 29 | 28, 22 | readdcld 11290 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → (1 +
(abs‘𝑦)) ∈
ℝ) |
| 30 | 29 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (1 + (abs‘𝑦)) ∈
ℝ) |
| 31 | | simprr3 1224 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))) |
| 32 | 30, 21, 23, 31 | lesub1dd 11879 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((1 + (abs‘𝑦)) − (abs‘𝑦)) ≤ ((abs‘(𝐹‘𝑧)) − (abs‘𝑦))) |
| 33 | 27, 32 | eqbrtrrd 5167 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 1 ≤ ((abs‘(𝐹‘𝑧)) − (abs‘𝑦))) |
| 34 | 16, 18 | abs2difd 15496 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ((abs‘(𝐹‘𝑧)) − (abs‘𝑦)) ≤ (abs‘((𝐹‘𝑧) − 𝑦))) |
| 35 | 11, 24, 20, 33, 34 | letrd 11418 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → 1 ≤ (abs‘((𝐹‘𝑧) − 𝑦))) |
| 36 | 11, 20, 35 | lensymd 11412 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ¬ (abs‘((𝐹‘𝑧) − 𝑦)) < 1) |
| 37 | 10, 36 | jcnd 163 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) ∧ (𝑧 ∈ 𝑆 ∧ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) → ¬ ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 38 | | breq2 5147 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑐 → ((abs‘(𝑧 − 𝐴)) < 𝑑 ↔ (abs‘(𝑧 − 𝐴)) < 𝑐)) |
| 39 | 38 | 3anbi2d 1443 |
. . . . . . . . . . . 12
⊢ (𝑑 = 𝑐 → ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))) ↔ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) |
| 40 | 39 | rexbidv 3179 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑐 → (∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))) ↔ ∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) |
| 41 | | breq1 5146 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = (1 + (abs‘𝑦)) → (𝑎 ≤ (abs‘(𝐹‘𝑧)) ↔ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧)))) |
| 42 | 41 | 3anbi3d 1444 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (1 + (abs‘𝑦)) → ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ 𝑎 ≤ (abs‘(𝐹‘𝑧))) ↔ (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) |
| 43 | 42 | rexbidv 3179 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (1 + (abs‘𝑦)) → (∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ 𝑎 ≤ (abs‘(𝐹‘𝑧))) ↔ ∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) |
| 44 | 43 | ralbidv 3178 |
. . . . . . . . . . . 12
⊢ (𝑎 = (1 + (abs‘𝑦)) → (∀𝑑 ∈ ℝ+
∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ 𝑎 ≤ (abs‘(𝐹‘𝑧))) ↔ ∀𝑑 ∈ ℝ+ ∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧))))) |
| 45 | | unblimceq0.0 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 46 | | unblimceq0.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 47 | | unblimceq0.3 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+
∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐹‘𝑥)))) |
| 48 | 45, 12, 46, 47 | unblimceq0lem 36507 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑎 ∈ ℝ+ ∀𝑑 ∈ ℝ+
∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ 𝑎 ≤ (abs‘(𝐹‘𝑧)))) |
| 49 | 48 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) →
∀𝑎 ∈
ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ 𝑎 ≤ (abs‘(𝐹‘𝑧)))) |
| 50 | | 0lt1 11785 |
. . . . . . . . . . . . . . 15
⊢ 0 <
1 |
| 51 | 50 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 <
1) |
| 52 | 17 | absge0d 15483 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 ≤
(abs‘𝑦)) |
| 53 | 28, 22, 51, 52 | addgtge0d 11837 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 0 < (1
+ (abs‘𝑦))) |
| 54 | 29, 53 | elrpd 13074 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → (1 +
(abs‘𝑦)) ∈
ℝ+) |
| 55 | 44, 49, 54 | rspcdva 3623 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) →
∀𝑑 ∈
ℝ+ ∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑑 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧)))) |
| 56 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → 𝑐 ∈
ℝ+) |
| 57 | 40, 55, 56 | rspcdva 3623 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) →
∃𝑧 ∈ 𝑆 (𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐 ∧ (1 + (abs‘𝑦)) ≤ (abs‘(𝐹‘𝑧)))) |
| 58 | 37, 57 | reximddv 3171 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) →
∃𝑧 ∈ 𝑆 ¬ ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 59 | | rexnal 3100 |
. . . . . . . . 9
⊢
(∃𝑧 ∈
𝑆 ¬ ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1) ↔ ¬ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 60 | 58, 59 | sylib 218 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℝ+) → ¬
∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 61 | 60 | nrexdv 3149 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ¬ ∃𝑐 ∈ ℝ+
∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 1)) |
| 62 | 2, 7, 61 | rspcedvd 3624 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ∃𝑒 ∈ ℝ+
¬ ∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)) |
| 63 | | rexnal 3100 |
. . . . . 6
⊢
(∃𝑒 ∈
ℝ+ ¬ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒) ↔ ¬ ∀𝑒 ∈ ℝ+ ∃𝑐 ∈ ℝ+
∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)) |
| 64 | 62, 63 | sylib 218 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ¬ ∀𝑒 ∈ ℝ+
∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)) |
| 65 | 64 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ ℂ → ¬ ∀𝑒 ∈ ℝ+
∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
| 66 | | imnan 399 |
. . . 4
⊢ ((𝑦 ∈ ℂ → ¬
∀𝑒 ∈
ℝ+ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)) ↔ ¬ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
| 67 | 65, 66 | sylib 218 |
. . 3
⊢ (𝜑 → ¬ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
| 68 | 12, 45, 46 | ellimc3 25914 |
. . 3
⊢ (𝜑 → (𝑦 ∈ (𝐹 limℂ 𝐴) ↔ (𝑦 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑐 ∈
ℝ+ ∀𝑧 ∈ 𝑆 ((𝑧 ≠ 𝐴 ∧ (abs‘(𝑧 − 𝐴)) < 𝑐) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))) |
| 69 | 67, 68 | mtbird 325 |
. 2
⊢ (𝜑 → ¬ 𝑦 ∈ (𝐹 limℂ 𝐴)) |
| 70 | 69 | eq0rdv 4407 |
1
⊢ (𝜑 → (𝐹 limℂ 𝐴) = ∅) |