Step | Hyp | Ref
| Expression |
1 | | 1rp 12978 |
. . . . . . . 8
β’ 1 β
β+ |
2 | 1 | a1i 11 |
. . . . . . 7
β’ ((π β§ π¦ β β) β 1 β
β+) |
3 | | breq2 5153 |
. . . . . . . . . . 11
β’ (π = 1 β ((absβ((πΉβπ§) β π¦)) < π β (absβ((πΉβπ§) β π¦)) < 1)) |
4 | 3 | imbi2d 341 |
. . . . . . . . . 10
β’ (π = 1 β (((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < π) β ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < 1))) |
5 | 4 | rexralbidv 3221 |
. . . . . . . . 9
β’ (π = 1 β (βπ β β+
βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < π) β βπ β β+ βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < 1))) |
6 | 5 | notbid 318 |
. . . . . . . 8
β’ (π = 1 β (Β¬ βπ β β+
βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < π) β Β¬ βπ β β+ βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < 1))) |
7 | 6 | adantl 483 |
. . . . . . 7
β’ (((π β§ π¦ β β) β§ π = 1) β (Β¬ βπ β β+ βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < π) β Β¬ βπ β β+ βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < 1))) |
8 | | simprr1 1222 |
. . . . . . . . . . . 12
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β π§ β π΄) |
9 | | simprr2 1223 |
. . . . . . . . . . . 12
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β (absβ(π§ β π΄)) < π) |
10 | 8, 9 | jca 513 |
. . . . . . . . . . 11
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β (π§ β π΄ β§ (absβ(π§ β π΄)) < π)) |
11 | | 1red 11215 |
. . . . . . . . . . . 12
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β 1 β
β) |
12 | | unblimceq0.1 |
. . . . . . . . . . . . . . . . 17
β’ (π β πΉ:πβΆβ) |
13 | 12 | ad2antrr 725 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π¦ β β) β§ π β β+) β πΉ:πβΆβ) |
14 | 13 | adantr 482 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β πΉ:πβΆβ) |
15 | | simprl 770 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β π§ β π) |
16 | 14, 15 | ffvelcdmd 7088 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β (πΉβπ§) β β) |
17 | | simplr 768 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π¦ β β) β§ π β β+) β π¦ β
β) |
18 | 17 | adantr 482 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β π¦ β β) |
19 | 16, 18 | subcld 11571 |
. . . . . . . . . . . . 13
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β ((πΉβπ§) β π¦) β β) |
20 | 19 | abscld 15383 |
. . . . . . . . . . . 12
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β (absβ((πΉβπ§) β π¦)) β β) |
21 | 16 | abscld 15383 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β (absβ(πΉβπ§)) β β) |
22 | 17 | abscld 15383 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π¦ β β) β§ π β β+) β
(absβπ¦) β
β) |
23 | 22 | adantr 482 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β (absβπ¦) β β) |
24 | 21, 23 | resubcld 11642 |
. . . . . . . . . . . . 13
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β ((absβ(πΉβπ§)) β (absβπ¦)) β β) |
25 | | 1cnd 11209 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β 1 β
β) |
26 | 23 | recnd 11242 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β (absβπ¦) β β) |
27 | 25, 26 | pncand 11572 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β ((1 + (absβπ¦)) β (absβπ¦)) = 1) |
28 | | 1red 11215 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π¦ β β) β§ π β β+) β 1 β
β) |
29 | 28, 22 | readdcld 11243 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π¦ β β) β§ π β β+) β (1 +
(absβπ¦)) β
β) |
30 | 29 | adantr 482 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β (1 + (absβπ¦)) β
β) |
31 | | simprr3 1224 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β (1 + (absβπ¦)) β€ (absβ(πΉβπ§))) |
32 | 30, 21, 23, 31 | lesub1dd 11830 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β ((1 + (absβπ¦)) β (absβπ¦)) β€ ((absβ(πΉβπ§)) β (absβπ¦))) |
33 | 27, 32 | eqbrtrrd 5173 |
. . . . . . . . . . . . 13
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β 1 β€ ((absβ(πΉβπ§)) β (absβπ¦))) |
34 | 16, 18 | abs2difd 15404 |
. . . . . . . . . . . . 13
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β ((absβ(πΉβπ§)) β (absβπ¦)) β€ (absβ((πΉβπ§) β π¦))) |
35 | 11, 24, 20, 33, 34 | letrd 11371 |
. . . . . . . . . . . 12
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β 1 β€ (absβ((πΉβπ§) β π¦))) |
36 | 11, 20, 35 | lensymd 11365 |
. . . . . . . . . . 11
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β Β¬ (absβ((πΉβπ§) β π¦)) < 1) |
37 | 10, 36 | jcnd 163 |
. . . . . . . . . 10
β’ ((((π β§ π¦ β β) β§ π β β+) β§ (π§ β π β§ (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) β Β¬ ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < 1)) |
38 | | breq2 5153 |
. . . . . . . . . . . . 13
β’ (π = π β ((absβ(π§ β π΄)) < π β (absβ(π§ β π΄)) < π)) |
39 | 38 | 3anbi2d 1442 |
. . . . . . . . . . . 12
β’ (π = π β ((π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))) β (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) |
40 | 39 | rexbidv 3179 |
. . . . . . . . . . 11
β’ (π = π β (βπ§ β π (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))) β βπ§ β π (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) |
41 | | breq1 5152 |
. . . . . . . . . . . . . . 15
β’ (π = (1 + (absβπ¦)) β (π β€ (absβ(πΉβπ§)) β (1 + (absβπ¦)) β€ (absβ(πΉβπ§)))) |
42 | 41 | 3anbi3d 1443 |
. . . . . . . . . . . . . 14
β’ (π = (1 + (absβπ¦)) β ((π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ π β€ (absβ(πΉβπ§))) β (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) |
43 | 42 | rexbidv 3179 |
. . . . . . . . . . . . 13
β’ (π = (1 + (absβπ¦)) β (βπ§ β π (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ π β€ (absβ(πΉβπ§))) β βπ§ β π (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) |
44 | 43 | ralbidv 3178 |
. . . . . . . . . . . 12
β’ (π = (1 + (absβπ¦)) β (βπ β β+
βπ§ β π (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ π β€ (absβ(πΉβπ§))) β βπ β β+ βπ§ β π (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§))))) |
45 | | unblimceq0.0 |
. . . . . . . . . . . . . 14
β’ (π β π β β) |
46 | | unblimceq0.2 |
. . . . . . . . . . . . . 14
β’ (π β π΄ β β) |
47 | | unblimceq0.3 |
. . . . . . . . . . . . . 14
β’ (π β βπ β β+ βπ β β+
βπ₯ β π ((absβ(π₯ β π΄)) < π β§ π β€ (absβ(πΉβπ₯)))) |
48 | 45, 12, 46, 47 | unblimceq0lem 35382 |
. . . . . . . . . . . . 13
β’ (π β βπ β β+ βπ β β+
βπ§ β π (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ π β€ (absβ(πΉβπ§)))) |
49 | 48 | ad2antrr 725 |
. . . . . . . . . . . 12
β’ (((π β§ π¦ β β) β§ π β β+) β
βπ β
β+ βπ β β+ βπ§ β π (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ π β€ (absβ(πΉβπ§)))) |
50 | | 0lt1 11736 |
. . . . . . . . . . . . . . 15
β’ 0 <
1 |
51 | 50 | a1i 11 |
. . . . . . . . . . . . . 14
β’ (((π β§ π¦ β β) β§ π β β+) β 0 <
1) |
52 | 17 | absge0d 15391 |
. . . . . . . . . . . . . 14
β’ (((π β§ π¦ β β) β§ π β β+) β 0 β€
(absβπ¦)) |
53 | 28, 22, 51, 52 | addgtge0d 11788 |
. . . . . . . . . . . . 13
β’ (((π β§ π¦ β β) β§ π β β+) β 0 < (1
+ (absβπ¦))) |
54 | 29, 53 | elrpd 13013 |
. . . . . . . . . . . 12
β’ (((π β§ π¦ β β) β§ π β β+) β (1 +
(absβπ¦)) β
β+) |
55 | 44, 49, 54 | rspcdva 3614 |
. . . . . . . . . . 11
β’ (((π β§ π¦ β β) β§ π β β+) β
βπ β
β+ βπ§ β π (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§)))) |
56 | | simpr 486 |
. . . . . . . . . . 11
β’ (((π β§ π¦ β β) β§ π β β+) β π β
β+) |
57 | 40, 55, 56 | rspcdva 3614 |
. . . . . . . . . 10
β’ (((π β§ π¦ β β) β§ π β β+) β
βπ§ β π (π§ β π΄ β§ (absβ(π§ β π΄)) < π β§ (1 + (absβπ¦)) β€ (absβ(πΉβπ§)))) |
58 | 37, 57 | reximddv 3172 |
. . . . . . . . 9
β’ (((π β§ π¦ β β) β§ π β β+) β
βπ§ β π Β¬ ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < 1)) |
59 | | rexnal 3101 |
. . . . . . . . 9
β’
(βπ§ β
π Β¬ ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < 1) β Β¬ βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < 1)) |
60 | 58, 59 | sylib 217 |
. . . . . . . 8
β’ (((π β§ π¦ β β) β§ π β β+) β Β¬
βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < 1)) |
61 | 60 | nrexdv 3150 |
. . . . . . 7
β’ ((π β§ π¦ β β) β Β¬ βπ β β+
βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < 1)) |
62 | 2, 7, 61 | rspcedvd 3615 |
. . . . . 6
β’ ((π β§ π¦ β β) β βπ β β+
Β¬ βπ β
β+ βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < π)) |
63 | | rexnal 3101 |
. . . . . 6
β’
(βπ β
β+ Β¬ βπ β β+ βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < π) β Β¬ βπ β β+ βπ β β+
βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < π)) |
64 | 62, 63 | sylib 217 |
. . . . 5
β’ ((π β§ π¦ β β) β Β¬ βπ β β+
βπ β
β+ βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < π)) |
65 | 64 | ex 414 |
. . . 4
β’ (π β (π¦ β β β Β¬ βπ β β+
βπ β
β+ βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < π))) |
66 | | imnan 401 |
. . . 4
β’ ((π¦ β β β Β¬
βπ β
β+ βπ β β+ βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < π)) β Β¬ (π¦ β β β§ βπ β β+
βπ β
β+ βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < π))) |
67 | 65, 66 | sylib 217 |
. . 3
β’ (π β Β¬ (π¦ β β β§ βπ β β+
βπ β
β+ βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < π))) |
68 | 12, 45, 46 | ellimc3 25396 |
. . 3
β’ (π β (π¦ β (πΉ limβ π΄) β (π¦ β β β§ βπ β β+
βπ β
β+ βπ§ β π ((π§ β π΄ β§ (absβ(π§ β π΄)) < π) β (absβ((πΉβπ§) β π¦)) < π)))) |
69 | 67, 68 | mtbird 325 |
. 2
β’ (π β Β¬ π¦ β (πΉ limβ π΄)) |
70 | 69 | eq0rdv 4405 |
1
β’ (π β (πΉ limβ π΄) = β
) |