MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moor Structured version   Visualization version   GIF version

Theorem moor 2675
Description: "At most one" is still the case when a disjunct is removed. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
moor (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜑)

Proof of Theorem moor
StepHypRef Expression
1 orc 854 . 2 (𝜑 → (𝜑𝜓))
21moimi 2669 1 (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 834  ∃*wmo 2619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-10 2174  ax-12 2203
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-ex 1853  df-nf 1858  df-eu 2622  df-mo 2623
This theorem is referenced by:  mooran2  2677
  Copyright terms: Public domain W3C validator