MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moor Structured version   Visualization version   GIF version

Theorem moor 2690
Description: "At most one" is still the case when a disjunct is removed. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
moor (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜑)

Proof of Theorem moor
StepHypRef Expression
1 orc 885 . 2 (𝜑 → (𝜑𝜓))
21moimi 2683 1 (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 865  ∃*wmo 2631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-10 2185  ax-12 2214
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-ex 1860  df-nf 1864  df-eu 2634  df-mo 2635
This theorem is referenced by:  mooran2  2692
  Copyright terms: Public domain W3C validator