MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moani Structured version   Visualization version   GIF version

Theorem moani 2550
Description: "At most one" is still true when a conjunct is added, inference form. (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
moani.1 ∃*𝑥𝜑
Assertion
Ref Expression
moani ∃*𝑥(𝜓𝜑)

Proof of Theorem moani
StepHypRef Expression
1 moani.1 . 2 ∃*𝑥𝜑
2 moan 2549 . 2 (∃*𝑥𝜑 → ∃*𝑥(𝜓𝜑))
31, 2ax-mp 5 1 ∃*𝑥(𝜓𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 395  ∃*wmo 2535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-mo 2537
This theorem is referenced by:  euxfr2w  3675  euxfr2  3677  rmoeq  3693  reuxfrd  3703  fvopab6  6969  mpofun  7476  1stconst  8036  2ndconst  8037  pwfir  9208  iunmapdisj  9921  axaddf  11043  axmulf  11044  joinval  18283  meetval  18297  reuxfrdf  32472
  Copyright terms: Public domain W3C validator