| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moani | Structured version Visualization version GIF version | ||
| Description: "At most one" is still true when a conjunct is added, inference form. (Contributed by NM, 9-Mar-1995.) |
| Ref | Expression |
|---|---|
| moani.1 | ⊢ ∃*𝑥𝜑 |
| Ref | Expression |
|---|---|
| moani | ⊢ ∃*𝑥(𝜓 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moani.1 | . 2 ⊢ ∃*𝑥𝜑 | |
| 2 | moan 2545 | . 2 ⊢ (∃*𝑥𝜑 → ∃*𝑥(𝜓 ∧ 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃*𝑥(𝜓 ∧ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃*wmo 2531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 |
| This theorem is referenced by: euxfr2w 3691 euxfr2 3693 rmoeq 3709 reuxfrd 3719 fvopab6 7002 mpofun 7513 1stconst 8079 2ndconst 8080 pwfir 9266 iunmapdisj 9976 axaddf 11098 axmulf 11099 joinval 18336 meetval 18350 reuxfrdf 32420 |
| Copyright terms: Public domain | W3C validator |