| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moani | Structured version Visualization version GIF version | ||
| Description: "At most one" is still true when a conjunct is added, inference form. (Contributed by NM, 9-Mar-1995.) |
| Ref | Expression |
|---|---|
| moani.1 | ⊢ ∃*𝑥𝜑 |
| Ref | Expression |
|---|---|
| moani | ⊢ ∃*𝑥(𝜓 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moani.1 | . 2 ⊢ ∃*𝑥𝜑 | |
| 2 | moan 2552 | . 2 ⊢ (∃*𝑥𝜑 → ∃*𝑥(𝜓 ∧ 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃*𝑥(𝜓 ∧ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃*wmo 2538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 |
| This theorem is referenced by: euxfr2w 3708 euxfr2 3710 rmoeq 3726 reuxfrd 3736 fvopab6 7025 mpofun 7536 1stconst 8104 2ndconst 8105 pwfir 9332 iunmapdisj 10042 axaddf 11164 axmulf 11165 joinval 18392 meetval 18406 reuxfrdf 32477 |
| Copyright terms: Public domain | W3C validator |