MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moani Structured version   Visualization version   GIF version

Theorem moani 2548
Description: "At most one" is still true when a conjunct is added, inference form. (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
moani.1 ∃*𝑥𝜑
Assertion
Ref Expression
moani ∃*𝑥(𝜓𝜑)

Proof of Theorem moani
StepHypRef Expression
1 moani.1 . 2 ∃*𝑥𝜑
2 moan 2547 . 2 (∃*𝑥𝜑 → ∃*𝑥(𝜓𝜑))
31, 2ax-mp 5 1 ∃*𝑥(𝜓𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 395  ∃*wmo 2533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-mo 2535
This theorem is referenced by:  euxfr2w  3679  euxfr2  3681  rmoeq  3697  reuxfrd  3707  fvopab6  6963  mpofun  7470  1stconst  8030  2ndconst  8031  pwfir  9201  iunmapdisj  9911  axaddf  11033  axmulf  11034  joinval  18278  meetval  18292  reuxfrdf  32465
  Copyright terms: Public domain W3C validator