MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moani Structured version   Visualization version   GIF version

Theorem moani 2553
Description: "At most one" is still true when a conjunct is added, inference form. (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
moani.1 ∃*𝑥𝜑
Assertion
Ref Expression
moani ∃*𝑥(𝜓𝜑)

Proof of Theorem moani
StepHypRef Expression
1 moani.1 . 2 ∃*𝑥𝜑
2 moan 2552 . 2 (∃*𝑥𝜑 → ∃*𝑥(𝜓𝜑))
31, 2ax-mp 5 1 ∃*𝑥(𝜓𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 395  ∃*wmo 2538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-mo 2540
This theorem is referenced by:  euxfr2w  3708  euxfr2  3710  rmoeq  3726  reuxfrd  3736  fvopab6  7025  mpofun  7536  1stconst  8104  2ndconst  8105  pwfir  9332  iunmapdisj  10042  axaddf  11164  axmulf  11165  joinval  18392  meetval  18406  reuxfrdf  32477
  Copyright terms: Public domain W3C validator