![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moani | Structured version Visualization version GIF version |
Description: "At most one" is still true when a conjunct is added, inference form. (Contributed by NM, 9-Mar-1995.) |
Ref | Expression |
---|---|
moani.1 | ⊢ ∃*𝑥𝜑 |
Ref | Expression |
---|---|
moani | ⊢ ∃*𝑥(𝜓 ∧ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moani.1 | . 2 ⊢ ∃*𝑥𝜑 | |
2 | moan 2555 | . 2 ⊢ (∃*𝑥𝜑 → ∃*𝑥(𝜓 ∧ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃*𝑥(𝜓 ∧ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃*wmo 2541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-mo 2543 |
This theorem is referenced by: euxfr2w 3742 euxfr2 3744 rmoeq 3760 reuxfrd 3770 fvopab6 7063 mpofun 7574 1stconst 8141 2ndconst 8142 pwfir 9383 iunmapdisj 10092 axaddf 11214 axmulf 11215 joinval 18447 meetval 18461 reuxfrdf 32519 |
Copyright terms: Public domain | W3C validator |