MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moani Structured version   Visualization version   GIF version

Theorem moani 2556
Description: "At most one" is still true when a conjunct is added, inference form. (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
moani.1 ∃*𝑥𝜑
Assertion
Ref Expression
moani ∃*𝑥(𝜓𝜑)

Proof of Theorem moani
StepHypRef Expression
1 moani.1 . 2 ∃*𝑥𝜑
2 moan 2555 . 2 (∃*𝑥𝜑 → ∃*𝑥(𝜓𝜑))
31, 2ax-mp 5 1 ∃*𝑥(𝜓𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 395  ∃*wmo 2541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543
This theorem is referenced by:  euxfr2w  3742  euxfr2  3744  rmoeq  3760  reuxfrd  3770  fvopab6  7063  mpofun  7574  1stconst  8141  2ndconst  8142  pwfir  9383  iunmapdisj  10092  axaddf  11214  axmulf  11215  joinval  18447  meetval  18461  reuxfrdf  32519
  Copyright terms: Public domain W3C validator