MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moimi Structured version   Visualization version   GIF version

Theorem moimi 2539
Description: The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006.) Remove use of ax-5 1913. (Revised by Steven Nguyen, 9-May-2023.)
Hypothesis
Ref Expression
moimi.1 (𝜑𝜓)
Assertion
Ref Expression
moimi (∃*𝑥𝜓 → ∃*𝑥𝜑)

Proof of Theorem moimi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 moimi.1 . . . . 5 (𝜑𝜓)
21imim1i 63 . . . 4 ((𝜓𝑥 = 𝑦) → (𝜑𝑥 = 𝑦))
32alimi 1813 . . 3 (∀𝑥(𝜓𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))
43eximi 1837 . 2 (∃𝑦𝑥(𝜓𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
5 df-mo 2534 . 2 (∃*𝑥𝜓 ↔ ∃𝑦𝑥(𝜓𝑥 = 𝑦))
6 df-mo 2534 . 2 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
74, 5, 63imtr4i 291 1 (∃*𝑥𝜓 → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wex 1781  ∃*wmo 2532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811
This theorem depends on definitions:  df-bi 206  df-ex 1782  df-mo 2534
This theorem is referenced by:  mobii  2542  moa1  2545  moan  2546  moor  2548  mooran1  2549  mooran2  2550  moaneu  2619  2moexv  2623  2euexv  2627  2exeuv  2628  2moex  2636  2euex  2637  2exeu  2642  sndisj  5138  disjxsn  5140  axsepgfromrep  5296  fununmo  6592  funcnvsn  6595  nfunsn  6930  caovmo  7640  iunmapdisj  10014  brdom3  10519  brdom5  10520  brdom4  10521  nqerf  10921  shftfn  15016  2ndcdisj2  22952  plyexmo  25817  ajfuni  30099  funadj  31126  cnlnadjeui  31317  amosym1  35299  funressnvmo  45741
  Copyright terms: Public domain W3C validator