| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moimi | Structured version Visualization version GIF version | ||
| Description: The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006.) Remove use of ax-5 1910. (Revised by Steven Nguyen, 9-May-2023.) |
| Ref | Expression |
|---|---|
| moimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| moimi | ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moimi.1 | . . . . 5 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | imim1i 63 | . . . 4 ⊢ ((𝜓 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
| 3 | 2 | alimi 1811 | . . 3 ⊢ (∀𝑥(𝜓 → 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 4 | 3 | eximi 1835 | . 2 ⊢ (∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 5 | df-mo 2533 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦)) | |
| 6 | df-mo 2533 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
| 7 | 4, 5, 6 | 3imtr4i 292 | 1 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 ∃*wmo 2531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-mo 2533 |
| This theorem is referenced by: mobii 2541 moa1 2544 moan 2545 moor 2547 mooran1 2548 mooran2 2549 moaneu 2616 2moexv 2620 2euexv 2624 2exeuv 2625 2moex 2633 2euex 2634 2exeu 2639 sndisj 5099 disjxsn 5101 axsepgfromrep 5249 fununmo 6563 funcnvsn 6566 nfunsn 6900 caovmo 7626 iunmapdisj 9976 brdom3 10481 brdom5 10482 brdom4 10483 nqerf 10883 shftfn 15039 2ndcdisj2 23344 plyexmo 26221 ajfuni 30788 funadj 31815 cnlnadjeui 32006 amosym1 36414 sinnpoly 46892 funressnvmo 47046 |
| Copyright terms: Public domain | W3C validator |