Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moimi | Structured version Visualization version GIF version |
Description: The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006.) Remove use of ax-5 1914. (Revised by Steven Nguyen, 9-May-2023.) |
Ref | Expression |
---|---|
moimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
moimi | ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moimi.1 | . . . . 5 ⊢ (𝜑 → 𝜓) | |
2 | 1 | imim1i 63 | . . . 4 ⊢ ((𝜓 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
3 | 2 | alimi 1815 | . . 3 ⊢ (∀𝑥(𝜓 → 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
4 | 3 | eximi 1838 | . 2 ⊢ (∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
5 | df-mo 2540 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦)) | |
6 | df-mo 2540 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
7 | 4, 5, 6 | 3imtr4i 291 | 1 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-mo 2540 |
This theorem is referenced by: mobii 2548 moa1 2551 moan 2552 moor 2554 mooran1 2555 mooran2 2556 moaneu 2625 2moexv 2629 2euexv 2633 2exeuv 2634 2moex 2642 2euex 2643 2exeu 2648 sndisj 5061 disjxsn 5063 axsepgfromrep 5216 fununmo 6465 funcnvsn 6468 nfunsn 6793 caovmo 7487 iunmapdisj 9710 brdom3 10215 brdom5 10216 brdom4 10217 nqerf 10617 shftfn 14712 2ndcdisj2 22516 plyexmo 25378 ajfuni 29122 funadj 30149 cnlnadjeui 30340 funressnvmo 44426 |
Copyright terms: Public domain | W3C validator |