![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moimi | Structured version Visualization version GIF version |
Description: The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006.) Remove use of ax-5 1909. (Revised by Steven Nguyen, 9-May-2023.) |
Ref | Expression |
---|---|
moimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
moimi | ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moimi.1 | . . . . 5 ⊢ (𝜑 → 𝜓) | |
2 | 1 | imim1i 63 | . . . 4 ⊢ ((𝜓 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
3 | 2 | alimi 1809 | . . 3 ⊢ (∀𝑥(𝜓 → 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
4 | 3 | eximi 1833 | . 2 ⊢ (∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
5 | df-mo 2543 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦)) | |
6 | df-mo 2543 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
7 | 4, 5, 6 | 3imtr4i 292 | 1 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∃wex 1777 ∃*wmo 2541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-mo 2543 |
This theorem is referenced by: mobii 2551 moa1 2554 moan 2555 moor 2557 mooran1 2558 mooran2 2559 moaneu 2626 2moexv 2630 2euexv 2634 2exeuv 2635 2moex 2643 2euex 2644 2exeu 2649 sndisj 5158 disjxsn 5160 axsepgfromrep 5315 fununmo 6625 funcnvsn 6628 nfunsn 6962 caovmo 7687 iunmapdisj 10092 brdom3 10597 brdom5 10598 brdom4 10599 nqerf 10999 shftfn 15122 2ndcdisj2 23486 plyexmo 26373 ajfuni 30891 funadj 31918 cnlnadjeui 32109 amosym1 36392 funressnvmo 46960 |
Copyright terms: Public domain | W3C validator |