| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moimi | Structured version Visualization version GIF version | ||
| Description: The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006.) Remove use of ax-5 1910. (Revised by Steven Nguyen, 9-May-2023.) |
| Ref | Expression |
|---|---|
| moimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| moimi | ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moimi.1 | . . . . 5 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | imim1i 63 | . . . 4 ⊢ ((𝜓 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
| 3 | 2 | alimi 1811 | . . 3 ⊢ (∀𝑥(𝜓 → 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 4 | 3 | eximi 1835 | . 2 ⊢ (∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 5 | df-mo 2534 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦)) | |
| 6 | df-mo 2534 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
| 7 | 4, 5, 6 | 3imtr4i 292 | 1 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 ∃*wmo 2532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-mo 2534 |
| This theorem is referenced by: mobii 2542 moa1 2545 moan 2546 moor 2548 mooran1 2549 mooran2 2550 moaneu 2617 2moexv 2621 2euexv 2625 2exeuv 2626 2moex 2634 2euex 2635 2exeu 2640 sndisj 5102 disjxsn 5104 axsepgfromrep 5252 fununmo 6566 funcnvsn 6569 nfunsn 6903 caovmo 7629 iunmapdisj 9983 brdom3 10488 brdom5 10489 brdom4 10490 nqerf 10890 shftfn 15046 2ndcdisj2 23351 plyexmo 26228 ajfuni 30795 funadj 31822 cnlnadjeui 32013 amosym1 36421 funressnvmo 47050 |
| Copyright terms: Public domain | W3C validator |