MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moimi Structured version   Visualization version   GIF version

Theorem moimi 2543
Description: The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006.) Remove use of ax-5 1908. (Revised by Steven Nguyen, 9-May-2023.)
Hypothesis
Ref Expression
moimi.1 (𝜑𝜓)
Assertion
Ref Expression
moimi (∃*𝑥𝜓 → ∃*𝑥𝜑)

Proof of Theorem moimi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 moimi.1 . . . . 5 (𝜑𝜓)
21imim1i 63 . . . 4 ((𝜓𝑥 = 𝑦) → (𝜑𝑥 = 𝑦))
32alimi 1808 . . 3 (∀𝑥(𝜓𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))
43eximi 1832 . 2 (∃𝑦𝑥(𝜓𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
5 df-mo 2538 . 2 (∃*𝑥𝜓 ↔ ∃𝑦𝑥(𝜓𝑥 = 𝑦))
6 df-mo 2538 . 2 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
74, 5, 63imtr4i 292 1 (∃*𝑥𝜓 → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wex 1776  ∃*wmo 2536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806
This theorem depends on definitions:  df-bi 207  df-ex 1777  df-mo 2538
This theorem is referenced by:  mobii  2546  moa1  2549  moan  2550  moor  2552  mooran1  2553  mooran2  2554  moaneu  2621  2moexv  2625  2euexv  2629  2exeuv  2630  2moex  2638  2euex  2639  2exeu  2644  sndisj  5140  disjxsn  5142  axsepgfromrep  5300  fununmo  6615  funcnvsn  6618  nfunsn  6949  caovmo  7670  iunmapdisj  10061  brdom3  10566  brdom5  10567  brdom4  10568  nqerf  10968  shftfn  15109  2ndcdisj2  23481  plyexmo  26370  ajfuni  30888  funadj  31915  cnlnadjeui  32106  amosym1  36409  funressnvmo  46995
  Copyright terms: Public domain W3C validator