Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moimi | Structured version Visualization version GIF version |
Description: The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006.) Remove use of ax-5 1913. (Revised by Steven Nguyen, 9-May-2023.) |
Ref | Expression |
---|---|
moimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
moimi | ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moimi.1 | . . . . 5 ⊢ (𝜑 → 𝜓) | |
2 | 1 | imim1i 63 | . . . 4 ⊢ ((𝜓 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
3 | 2 | alimi 1814 | . . 3 ⊢ (∀𝑥(𝜓 → 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
4 | 3 | eximi 1837 | . 2 ⊢ (∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
5 | df-mo 2540 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦)) | |
6 | df-mo 2540 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
7 | 4, 5, 6 | 3imtr4i 292 | 1 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1782 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-mo 2540 |
This theorem is referenced by: mobii 2548 moa1 2551 moan 2552 moor 2554 mooran1 2555 mooran2 2556 moaneu 2625 2moexv 2629 2euexv 2633 2exeuv 2634 2moex 2642 2euex 2643 2exeu 2648 sndisj 5065 disjxsn 5067 axsepgfromrep 5221 fununmo 6481 funcnvsn 6484 nfunsn 6811 caovmo 7509 iunmapdisj 9779 brdom3 10284 brdom5 10285 brdom4 10286 nqerf 10686 shftfn 14784 2ndcdisj2 22608 plyexmo 25473 ajfuni 29221 funadj 30248 cnlnadjeui 30439 funressnvmo 44539 |
Copyright terms: Public domain | W3C validator |