| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moimi | Structured version Visualization version GIF version | ||
| Description: The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006.) Remove use of ax-5 1910. (Revised by Steven Nguyen, 9-May-2023.) |
| Ref | Expression |
|---|---|
| moimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| moimi | ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moimi.1 | . . . . 5 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | imim1i 63 | . . . 4 ⊢ ((𝜓 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
| 3 | 2 | alimi 1811 | . . 3 ⊢ (∀𝑥(𝜓 → 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 4 | 3 | eximi 1835 | . 2 ⊢ (∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 5 | df-mo 2533 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦)) | |
| 6 | df-mo 2533 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
| 7 | 4, 5, 6 | 3imtr4i 292 | 1 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 ∃*wmo 2531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-mo 2533 |
| This theorem is referenced by: mobii 2541 moa1 2544 moan 2545 moor 2547 mooran1 2548 mooran2 2549 moaneu 2616 2moexv 2620 2euexv 2624 2exeuv 2625 2moex 2633 2euex 2634 2exeu 2639 sndisj 5087 disjxsn 5089 axsepgfromrep 5236 fununmo 6533 funcnvsn 6536 nfunsn 6866 caovmo 7590 iunmapdisj 9936 brdom3 10441 brdom5 10442 brdom4 10443 nqerf 10843 shftfn 14998 2ndcdisj2 23360 plyexmo 26237 ajfuni 30821 funadj 31848 cnlnadjeui 32039 amosym1 36399 sinnpoly 46876 funressnvmo 47030 |
| Copyright terms: Public domain | W3C validator |