![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moimi | Structured version Visualization version GIF version |
Description: The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006.) Remove use of ax-5 1913. (Revised by Steven Nguyen, 9-May-2023.) |
Ref | Expression |
---|---|
moimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
moimi | ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moimi.1 | . . . . 5 ⊢ (𝜑 → 𝜓) | |
2 | 1 | imim1i 63 | . . . 4 ⊢ ((𝜓 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
3 | 2 | alimi 1813 | . . 3 ⊢ (∀𝑥(𝜓 → 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
4 | 3 | eximi 1837 | . 2 ⊢ (∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
5 | df-mo 2534 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦)) | |
6 | df-mo 2534 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
7 | 4, 5, 6 | 3imtr4i 291 | 1 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 ∃wex 1781 ∃*wmo 2532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-ex 1782 df-mo 2534 |
This theorem is referenced by: mobii 2542 moa1 2545 moan 2546 moor 2548 mooran1 2549 mooran2 2550 moaneu 2619 2moexv 2623 2euexv 2627 2exeuv 2628 2moex 2636 2euex 2637 2exeu 2642 sndisj 5138 disjxsn 5140 axsepgfromrep 5296 fununmo 6592 funcnvsn 6595 nfunsn 6930 caovmo 7640 iunmapdisj 10014 brdom3 10519 brdom5 10520 brdom4 10521 nqerf 10921 shftfn 15016 2ndcdisj2 22952 plyexmo 25817 ajfuni 30099 funadj 31126 cnlnadjeui 31317 amosym1 35299 funressnvmo 45741 |
Copyright terms: Public domain | W3C validator |