| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moimi | Structured version Visualization version GIF version | ||
| Description: The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006.) Remove use of ax-5 1911. (Revised by Steven Nguyen, 9-May-2023.) |
| Ref | Expression |
|---|---|
| moimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| moimi | ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moimi.1 | . . . . 5 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | imim1i 63 | . . . 4 ⊢ ((𝜓 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
| 3 | 2 | alimi 1812 | . . 3 ⊢ (∀𝑥(𝜓 → 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 4 | 3 | eximi 1836 | . 2 ⊢ (∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 5 | df-mo 2535 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦)) | |
| 6 | df-mo 2535 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
| 7 | 4, 5, 6 | 3imtr4i 292 | 1 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∃wex 1780 ∃*wmo 2533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-mo 2535 |
| This theorem is referenced by: mobii 2543 moa1 2546 moan 2547 moor 2549 mooran1 2550 mooran2 2551 moaneu 2618 2moexv 2622 2euexv 2626 2exeuv 2627 2moex 2635 2euex 2636 2exeu 2641 sndisj 5083 disjxsn 5085 axsepgfromrep 5232 fununmo 6528 funcnvsn 6531 nfunsn 6861 caovmo 7583 iunmapdisj 9911 brdom3 10416 brdom5 10417 brdom4 10418 nqerf 10818 shftfn 14977 2ndcdisj2 23370 plyexmo 26246 ajfuni 30834 funadj 31861 cnlnadjeui 32052 amosym1 36459 sinnpoly 46921 funressnvmo 47075 |
| Copyright terms: Public domain | W3C validator |