Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moimi | Structured version Visualization version GIF version |
Description: The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006.) Remove use of ax-5 1911. (Revised by Steven Nguyen, 9-May-2023.) |
Ref | Expression |
---|---|
moimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
moimi | ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moimi.1 | . . . . 5 ⊢ (𝜑 → 𝜓) | |
2 | 1 | imim1i 63 | . . . 4 ⊢ ((𝜓 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
3 | 2 | alimi 1813 | . . 3 ⊢ (∀𝑥(𝜓 → 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
4 | 3 | eximi 1836 | . 2 ⊢ (∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
5 | df-mo 2557 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦)) | |
6 | df-mo 2557 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
7 | 4, 5, 6 | 3imtr4i 295 | 1 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1536 ∃wex 1781 ∃*wmo 2555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 210 df-ex 1782 df-mo 2557 |
This theorem is referenced by: mobii 2565 moa1 2569 moan 2570 moor 2572 mooran1 2573 mooran2 2574 moaneu 2644 2moexv 2648 2euexv 2652 2exeuv 2653 2moex 2661 2euex 2662 2exeu 2667 sndisj 5027 disjxsn 5029 axsepgfromrep 5171 fununmo 6387 funcnvsn 6390 nfunsn 6700 caovmo 7387 iunmapdisj 9496 brdom3 10001 brdom5 10002 brdom4 10003 nqerf 10403 shftfn 14493 2ndcdisj2 22170 plyexmo 25021 ajfuni 28754 funadj 29781 cnlnadjeui 29972 funressnvmo 44038 |
Copyright terms: Public domain | W3C validator |