MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moimi Structured version   Visualization version   GIF version

Theorem moimi 2542
Description: The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006.) Remove use of ax-5 1911. (Revised by Steven Nguyen, 9-May-2023.)
Hypothesis
Ref Expression
moimi.1 (𝜑𝜓)
Assertion
Ref Expression
moimi (∃*𝑥𝜓 → ∃*𝑥𝜑)

Proof of Theorem moimi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 moimi.1 . . . . 5 (𝜑𝜓)
21imim1i 63 . . . 4 ((𝜓𝑥 = 𝑦) → (𝜑𝑥 = 𝑦))
32alimi 1812 . . 3 (∀𝑥(𝜓𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))
43eximi 1836 . 2 (∃𝑦𝑥(𝜓𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
5 df-mo 2537 . 2 (∃*𝑥𝜓 ↔ ∃𝑦𝑥(𝜓𝑥 = 𝑦))
6 df-mo 2537 . 2 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
74, 5, 63imtr4i 292 1 (∃*𝑥𝜓 → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wex 1780  ∃*wmo 2535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-ex 1781  df-mo 2537
This theorem is referenced by:  mobii  2545  moa1  2548  moan  2549  moor  2551  mooran1  2552  mooran2  2553  moaneu  2620  2moexv  2624  2euexv  2628  2exeuv  2629  2moex  2637  2euex  2638  2exeu  2643  sndisj  5085  disjxsn  5087  axsepgfromrep  5234  fununmo  6533  funcnvsn  6536  nfunsn  6867  caovmo  7589  iunmapdisj  9921  brdom3  10426  brdom5  10427  brdom4  10428  nqerf  10828  shftfn  14982  2ndcdisj2  23373  plyexmo  26249  ajfuni  30841  funadj  31868  cnlnadjeui  32059  amosym1  36491  sinnpoly  47015  funressnvmo  47169
  Copyright terms: Public domain W3C validator