MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mooran2 Structured version   Visualization version   GIF version

Theorem mooran2 2692
Description: "At most one" exports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
mooran2 (∃*𝑥(𝜑𝜓) → (∃*𝑥𝜑 ∧ ∃*𝑥𝜓))

Proof of Theorem mooran2
StepHypRef Expression
1 moor 2690 . 2 (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜑)
2 olc 886 . . 3 (𝜓 → (𝜑𝜓))
32moimi 2683 . 2 (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜓)
41, 3jca 503 1 (∃*𝑥(𝜑𝜓) → (∃*𝑥𝜑 ∧ ∃*𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wo 865  ∃*wmo 2631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-10 2185  ax-12 2214
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-ex 1860  df-nf 1864  df-eu 2634  df-mo 2635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator