MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mooran2 Structured version   Visualization version   GIF version

Theorem mooran2 2554
Description: "At most one" exports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
mooran2 (∃*𝑥(𝜑𝜓) → (∃*𝑥𝜑 ∧ ∃*𝑥𝜓))

Proof of Theorem mooran2
StepHypRef Expression
1 moor 2552 . 2 (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜑)
2 olc 868 . . 3 (𝜓 → (𝜑𝜓))
32moimi 2543 . 2 (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜓)
41, 3jca 511 1 (∃*𝑥(𝜑𝜓) → (∃*𝑥𝜑 ∧ ∃*𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  ∃*wmo 2536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1777  df-mo 2538
This theorem is referenced by:  rmoun  32522
  Copyright terms: Public domain W3C validator