Step | Hyp | Ref
| Expression |
1 | | fedgmul.1 |
. . . . . . . . . . 11
β’ (π β πΈ β DivRing) |
2 | | fedgmul.3 |
. . . . . . . . . . 11
β’ (π β πΎ β DivRing) |
3 | | fedgmul.4 |
. . . . . . . . . . . . 13
β’ (π β π β (SubRingβπΈ)) |
4 | | fedgmul.5 |
. . . . . . . . . . . . 13
β’ (π β π β (SubRingβπΉ)) |
5 | | fedgmul.f |
. . . . . . . . . . . . . . 15
β’ πΉ = (πΈ βΎs π) |
6 | 5 | subsubrg 20345 |
. . . . . . . . . . . . . 14
β’ (π β (SubRingβπΈ) β (π β (SubRingβπΉ) β (π β (SubRingβπΈ) β§ π β π))) |
7 | 6 | biimpa 478 |
. . . . . . . . . . . . 13
β’ ((π β (SubRingβπΈ) β§ π β (SubRingβπΉ)) β (π β (SubRingβπΈ) β§ π β π)) |
8 | 3, 4, 7 | syl2anc 585 |
. . . . . . . . . . . 12
β’ (π β (π β (SubRingβπΈ) β§ π β π)) |
9 | 8 | simpld 496 |
. . . . . . . . . . 11
β’ (π β π β (SubRingβπΈ)) |
10 | | fedgmul.a |
. . . . . . . . . . . 12
β’ π΄ = ((subringAlg βπΈ)βπ) |
11 | | fedgmul.k |
. . . . . . . . . . . 12
β’ πΎ = (πΈ βΎs π) |
12 | 10, 11 | sralvec 32675 |
. . . . . . . . . . 11
β’ ((πΈ β DivRing β§ πΎ β DivRing β§ π β (SubRingβπΈ)) β π΄ β LVec) |
13 | 1, 2, 9, 12 | syl3anc 1372 |
. . . . . . . . . 10
β’ (π β π΄ β LVec) |
14 | | lveclmod 20717 |
. . . . . . . . . 10
β’ (π΄ β LVec β π΄ β LMod) |
15 | 13, 14 | syl 17 |
. . . . . . . . 9
β’ (π β π΄ β LMod) |
16 | | fedgmullem.x |
. . . . . . . . . . 11
β’ (π β π β (LBasisβπΆ)) |
17 | | eqid 2733 |
. . . . . . . . . . . 12
β’
(BaseβπΆ) =
(BaseβπΆ) |
18 | | eqid 2733 |
. . . . . . . . . . . 12
β’
(LBasisβπΆ) =
(LBasisβπΆ) |
19 | 17, 18 | lbsss 20688 |
. . . . . . . . . . 11
β’ (π β (LBasisβπΆ) β π β (BaseβπΆ)) |
20 | 16, 19 | syl 17 |
. . . . . . . . . 10
β’ (π β π β (BaseβπΆ)) |
21 | | eqid 2733 |
. . . . . . . . . . . . . . . 16
β’
(BaseβπΈ) =
(BaseβπΈ) |
22 | 21 | subrgss 20320 |
. . . . . . . . . . . . . . 15
β’ (π β (SubRingβπΈ) β π β (BaseβπΈ)) |
23 | 3, 22 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β π β (BaseβπΈ)) |
24 | 5, 21 | ressbas2 17182 |
. . . . . . . . . . . . . 14
β’ (π β (BaseβπΈ) β π = (BaseβπΉ)) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π = (BaseβπΉ)) |
26 | | fedgmul.c |
. . . . . . . . . . . . . . 15
β’ πΆ = ((subringAlg βπΉ)βπ) |
27 | 26 | a1i 11 |
. . . . . . . . . . . . . 14
β’ (π β πΆ = ((subringAlg βπΉ)βπ)) |
28 | | eqid 2733 |
. . . . . . . . . . . . . . . 16
β’
(BaseβπΉ) =
(BaseβπΉ) |
29 | 28 | subrgss 20320 |
. . . . . . . . . . . . . . 15
β’ (π β (SubRingβπΉ) β π β (BaseβπΉ)) |
30 | 4, 29 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β π β (BaseβπΉ)) |
31 | 27, 30 | srabase 20792 |
. . . . . . . . . . . . 13
β’ (π β (BaseβπΉ) = (BaseβπΆ)) |
32 | 25, 31 | eqtrd 2773 |
. . . . . . . . . . . 12
β’ (π β π = (BaseβπΆ)) |
33 | 32, 23 | eqsstrrd 4022 |
. . . . . . . . . . 11
β’ (π β (BaseβπΆ) β (BaseβπΈ)) |
34 | 10 | a1i 11 |
. . . . . . . . . . . 12
β’ (π β π΄ = ((subringAlg βπΈ)βπ)) |
35 | 21 | subrgss 20320 |
. . . . . . . . . . . . 13
β’ (π β (SubRingβπΈ) β π β (BaseβπΈ)) |
36 | 9, 35 | syl 17 |
. . . . . . . . . . . 12
β’ (π β π β (BaseβπΈ)) |
37 | 34, 36 | srabase 20792 |
. . . . . . . . . . 11
β’ (π β (BaseβπΈ) = (Baseβπ΄)) |
38 | 33, 37 | sseqtrd 4023 |
. . . . . . . . . 10
β’ (π β (BaseβπΆ) β (Baseβπ΄)) |
39 | 20, 38 | sstrd 3993 |
. . . . . . . . 9
β’ (π β π β (Baseβπ΄)) |
40 | 34, 3, 36 | srasubrg 32674 |
. . . . . . . . . . . 12
β’ (π β π β (SubRingβπ΄)) |
41 | | subrgsubg 20325 |
. . . . . . . . . . . 12
β’ (π β (SubRingβπ΄) β π β (SubGrpβπ΄)) |
42 | 40, 41 | syl 17 |
. . . . . . . . . . 11
β’ (π β π β (SubGrpβπ΄)) |
43 | 10, 1, 9 | drgextvsca 32678 |
. . . . . . . . . . . . . 14
β’ (π β (.rβπΈ) = (
Β·π βπ΄)) |
44 | 43 | oveqdr 7437 |
. . . . . . . . . . . . 13
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΄)) β§ π¦ β π)) β (π₯(.rβπΈ)π¦) = (π₯( Β·π
βπ΄)π¦)) |
45 | 3 | adantr 482 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΄)) β§ π¦ β π)) β π β (SubRingβπΈ)) |
46 | 8 | simprd 497 |
. . . . . . . . . . . . . . . 16
β’ (π β π β π) |
47 | 46 | adantr 482 |
. . . . . . . . . . . . . . 15
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΄)) β§ π¦ β π)) β π β π) |
48 | | simprl 770 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΄)) β§ π¦ β π)) β π₯ β (Baseβ(Scalarβπ΄))) |
49 | | ressabs 17194 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β (SubRingβπΈ) β§ π β π) β ((πΈ βΎs π) βΎs π) = (πΈ βΎs π)) |
50 | 3, 46, 49 | syl2anc 585 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β ((πΈ βΎs π) βΎs π) = (πΈ βΎs π)) |
51 | 5 | oveq1i 7419 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (πΉ βΎs π) = ((πΈ βΎs π) βΎs π) |
52 | 50, 51, 11 | 3eqtr4g 2798 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (πΉ βΎs π) = πΎ) |
53 | 27, 30 | srasca 20798 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (πΉ βΎs π) = (ScalarβπΆ)) |
54 | 52, 53 | eqtr3d 2775 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β πΎ = (ScalarβπΆ)) |
55 | 54 | fveq2d 6896 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (BaseβπΎ) =
(Baseβ(ScalarβπΆ))) |
56 | 11, 21 | ressbas2 17182 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (BaseβπΈ) β π = (BaseβπΎ)) |
57 | 36, 56 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ (π β π = (BaseβπΎ)) |
58 | 34, 36 | srasca 20798 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β (πΈ βΎs π) = (Scalarβπ΄)) |
59 | 11, 58 | eqtrid 2785 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β πΎ = (Scalarβπ΄)) |
60 | 52, 53, 59 | 3eqtr3rd 2782 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (Scalarβπ΄) = (ScalarβπΆ)) |
61 | 60 | fveq2d 6896 |
. . . . . . . . . . . . . . . . . 18
β’ (π β
(Baseβ(Scalarβπ΄)) = (Baseβ(ScalarβπΆ))) |
62 | 55, 57, 61 | 3eqtr4d 2783 |
. . . . . . . . . . . . . . . . 17
β’ (π β π = (Baseβ(Scalarβπ΄))) |
63 | 62 | adantr 482 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΄)) β§ π¦ β π)) β π = (Baseβ(Scalarβπ΄))) |
64 | 48, 63 | eleqtrrd 2837 |
. . . . . . . . . . . . . . 15
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΄)) β§ π¦ β π)) β π₯ β π) |
65 | 47, 64 | sseldd 3984 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΄)) β§ π¦ β π)) β π₯ β π) |
66 | | simprr 772 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΄)) β§ π¦ β π)) β π¦ β π) |
67 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(.rβπΈ) = (.rβπΈ) |
68 | 67 | subrgmcl 20331 |
. . . . . . . . . . . . . 14
β’ ((π β (SubRingβπΈ) β§ π₯ β π β§ π¦ β π) β (π₯(.rβπΈ)π¦) β π) |
69 | 45, 65, 66, 68 | syl3anc 1372 |
. . . . . . . . . . . . 13
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΄)) β§ π¦ β π)) β (π₯(.rβπΈ)π¦) β π) |
70 | 44, 69 | eqeltrrd 2835 |
. . . . . . . . . . . 12
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΄)) β§ π¦ β π)) β (π₯( Β·π
βπ΄)π¦) β π) |
71 | 70 | ralrimivva 3201 |
. . . . . . . . . . 11
β’ (π β βπ₯ β (Baseβ(Scalarβπ΄))βπ¦ β π (π₯( Β·π
βπ΄)π¦) β π) |
72 | | eqid 2733 |
. . . . . . . . . . . . 13
β’
(Scalarβπ΄) =
(Scalarβπ΄) |
73 | | eqid 2733 |
. . . . . . . . . . . . 13
β’
(Baseβ(Scalarβπ΄)) = (Baseβ(Scalarβπ΄)) |
74 | | eqid 2733 |
. . . . . . . . . . . . 13
β’
(Baseβπ΄) =
(Baseβπ΄) |
75 | | eqid 2733 |
. . . . . . . . . . . . 13
β’ (
Β·π βπ΄) = ( Β·π
βπ΄) |
76 | | eqid 2733 |
. . . . . . . . . . . . 13
β’
(LSubSpβπ΄) =
(LSubSpβπ΄) |
77 | 72, 73, 74, 75, 76 | islss4 20573 |
. . . . . . . . . . . 12
β’ (π΄ β LMod β (π β (LSubSpβπ΄) β (π β (SubGrpβπ΄) β§ βπ₯ β (Baseβ(Scalarβπ΄))βπ¦ β π (π₯( Β·π
βπ΄)π¦) β π))) |
78 | 77 | biimpar 479 |
. . . . . . . . . . 11
β’ ((π΄ β LMod β§ (π β (SubGrpβπ΄) β§ βπ₯ β
(Baseβ(Scalarβπ΄))βπ¦ β π (π₯( Β·π
βπ΄)π¦) β π)) β π β (LSubSpβπ΄)) |
79 | 15, 42, 71, 78 | syl12anc 836 |
. . . . . . . . . 10
β’ (π β π β (LSubSpβπ΄)) |
80 | 20, 32 | sseqtrrd 4024 |
. . . . . . . . . 10
β’ (π β π β π) |
81 | 18 | lbslinds 21388 |
. . . . . . . . . . . 12
β’
(LBasisβπΆ)
β (LIndSβπΆ) |
82 | 81, 16 | sselid 3981 |
. . . . . . . . . . 11
β’ (π β π β (LIndSβπΆ)) |
83 | 23, 37 | sseqtrd 4023 |
. . . . . . . . . . . . . 14
β’ (π β π β (Baseβπ΄)) |
84 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’ (π΄ βΎs π) = (π΄ βΎs π) |
85 | 84, 74 | ressbas2 17182 |
. . . . . . . . . . . . . 14
β’ (π β (Baseβπ΄) β π = (Baseβ(π΄ βΎs π))) |
86 | 83, 85 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π = (Baseβ(π΄ βΎs π))) |
87 | 25, 86, 31 | 3eqtr3rd 2782 |
. . . . . . . . . . . 12
β’ (π β (BaseβπΆ) = (Baseβ(π΄ βΎs π))) |
88 | 84, 72 | resssca 17288 |
. . . . . . . . . . . . . . 15
β’ (π β (SubRingβπΈ) β (Scalarβπ΄) = (Scalarβ(π΄ βΎs π))) |
89 | 3, 88 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (Scalarβπ΄) = (Scalarβ(π΄ βΎs π))) |
90 | 60, 89 | eqtr3d 2775 |
. . . . . . . . . . . . 13
β’ (π β (ScalarβπΆ) = (Scalarβ(π΄ βΎs π))) |
91 | 90 | fveq2d 6896 |
. . . . . . . . . . . 12
β’ (π β
(Baseβ(ScalarβπΆ)) = (Baseβ(Scalarβ(π΄ βΎs π)))) |
92 | 90 | fveq2d 6896 |
. . . . . . . . . . . 12
β’ (π β
(0gβ(ScalarβπΆ)) =
(0gβ(Scalarβ(π΄ βΎs π)))) |
93 | | eqid 2733 |
. . . . . . . . . . . . . . . . 17
β’
(+gβπΈ) = (+gβπΈ) |
94 | 5, 93 | ressplusg 17235 |
. . . . . . . . . . . . . . . 16
β’ (π β (SubRingβπΈ) β
(+gβπΈ) =
(+gβπΉ)) |
95 | 3, 94 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β (+gβπΈ) = (+gβπΉ)) |
96 | 34, 36 | sraaddg 20794 |
. . . . . . . . . . . . . . 15
β’ (π β (+gβπΈ) = (+gβπ΄)) |
97 | 27, 30 | sraaddg 20794 |
. . . . . . . . . . . . . . 15
β’ (π β (+gβπΉ) = (+gβπΆ)) |
98 | 95, 96, 97 | 3eqtr3rd 2782 |
. . . . . . . . . . . . . 14
β’ (π β (+gβπΆ) = (+gβπ΄)) |
99 | | eqid 2733 |
. . . . . . . . . . . . . . . 16
β’
(+gβπ΄) = (+gβπ΄) |
100 | 84, 99 | ressplusg 17235 |
. . . . . . . . . . . . . . 15
β’ (π β (SubRingβπΈ) β
(+gβπ΄) =
(+gβ(π΄
βΎs π))) |
101 | 3, 100 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (+gβπ΄) = (+gβ(π΄ βΎs π))) |
102 | 98, 101 | eqtrd 2773 |
. . . . . . . . . . . . 13
β’ (π β (+gβπΆ) = (+gβ(π΄ βΎs π))) |
103 | 102 | oveqdr 7437 |
. . . . . . . . . . . 12
β’ ((π β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β (π₯(+gβπΆ)π¦) = (π₯(+gβ(π΄ βΎs π))π¦)) |
104 | | fedgmul.2 |
. . . . . . . . . . . . . . 15
β’ (π β πΉ β DivRing) |
105 | 52, 2 | eqeltrd 2834 |
. . . . . . . . . . . . . . 15
β’ (π β (πΉ βΎs π) β DivRing) |
106 | | eqid 2733 |
. . . . . . . . . . . . . . . 16
β’ (πΉ βΎs π) = (πΉ βΎs π) |
107 | 26, 106 | sralvec 32675 |
. . . . . . . . . . . . . . 15
β’ ((πΉ β DivRing β§ (πΉ βΎs π) β DivRing β§ π β (SubRingβπΉ)) β πΆ β LVec) |
108 | 104, 105,
4, 107 | syl3anc 1372 |
. . . . . . . . . . . . . 14
β’ (π β πΆ β LVec) |
109 | | lveclmod 20717 |
. . . . . . . . . . . . . 14
β’ (πΆ β LVec β πΆ β LMod) |
110 | 108, 109 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β πΆ β LMod) |
111 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(ScalarβπΆ) =
(ScalarβπΆ) |
112 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’ (
Β·π βπΆ) = ( Β·π
βπΆ) |
113 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(Baseβ(ScalarβπΆ)) = (Baseβ(ScalarβπΆ)) |
114 | 17, 111, 112, 113 | lmodvscl 20489 |
. . . . . . . . . . . . . 14
β’ ((πΆ β LMod β§ π₯ β
(Baseβ(ScalarβπΆ)) β§ π¦ β (BaseβπΆ)) β (π₯( Β·π
βπΆ)π¦) β (BaseβπΆ)) |
115 | 114 | 3expb 1121 |
. . . . . . . . . . . . 13
β’ ((πΆ β LMod β§ (π₯ β
(Baseβ(ScalarβπΆ)) β§ π¦ β (BaseβπΆ))) β (π₯( Β·π
βπΆ)π¦) β (BaseβπΆ)) |
116 | 110, 115 | sylan 581 |
. . . . . . . . . . . 12
β’ ((π β§ (π₯ β (Baseβ(ScalarβπΆ)) β§ π¦ β (BaseβπΆ))) β (π₯( Β·π
βπΆ)π¦) β (BaseβπΆ)) |
117 | | fedgmul.b |
. . . . . . . . . . . . . . . 16
β’ π΅ = ((subringAlg βπΈ)βπ) |
118 | 117, 1, 3 | drgextvsca 32678 |
. . . . . . . . . . . . . . 15
β’ (π β (.rβπΈ) = (
Β·π βπ΅)) |
119 | 43, 118 | eqtr3d 2775 |
. . . . . . . . . . . . . 14
β’ (π β (
Β·π βπ΄) = ( Β·π
βπ΅)) |
120 | 84, 75 | ressvsca 17289 |
. . . . . . . . . . . . . . 15
β’ (π β (SubRingβπΈ) β (
Β·π βπ΄) = ( Β·π
β(π΄
βΎs π))) |
121 | 3, 120 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (
Β·π βπ΄) = ( Β·π
β(π΄
βΎs π))) |
122 | 5, 67 | ressmulr 17252 |
. . . . . . . . . . . . . . . 16
β’ (π β (SubRingβπΈ) β
(.rβπΈ) =
(.rβπΉ)) |
123 | 3, 122 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β (.rβπΈ) = (.rβπΉ)) |
124 | 26, 104, 4 | drgextvsca 32678 |
. . . . . . . . . . . . . . 15
β’ (π β (.rβπΉ) = (
Β·π βπΆ)) |
125 | 123, 118,
124 | 3eqtr3d 2781 |
. . . . . . . . . . . . . 14
β’ (π β (
Β·π βπ΅) = ( Β·π
βπΆ)) |
126 | 119, 121,
125 | 3eqtr3rd 2782 |
. . . . . . . . . . . . 13
β’ (π β (
Β·π βπΆ) = ( Β·π
β(π΄
βΎs π))) |
127 | 126 | oveqdr 7437 |
. . . . . . . . . . . 12
β’ ((π β§ (π₯ β (Baseβ(ScalarβπΆ)) β§ π¦ β (BaseβπΆ))) β (π₯( Β·π
βπΆ)π¦) = (π₯( Β·π
β(π΄
βΎs π))π¦)) |
128 | | ovexd 7444 |
. . . . . . . . . . . 12
β’ (π β (π΄ βΎs π) β V) |
129 | 87, 91, 92, 103, 116, 127, 108, 128 | lindspropd 32499 |
. . . . . . . . . . 11
β’ (π β (LIndSβπΆ) = (LIndSβ(π΄ βΎs π))) |
130 | 82, 129 | eleqtrd 2836 |
. . . . . . . . . 10
β’ (π β π β (LIndSβ(π΄ βΎs π))) |
131 | 76, 84 | lsslinds 21386 |
. . . . . . . . . . 11
β’ ((π΄ β LMod β§ π β (LSubSpβπ΄) β§ π β π) β (π β (LIndSβ(π΄ βΎs π)) β π β (LIndSβπ΄))) |
132 | 131 | biimpa 478 |
. . . . . . . . . 10
β’ (((π΄ β LMod β§ π β (LSubSpβπ΄) β§ π β π) β§ π β (LIndSβ(π΄ βΎs π))) β π β (LIndSβπ΄)) |
133 | 15, 79, 80, 130, 132 | syl31anc 1374 |
. . . . . . . . 9
β’ (π β π β (LIndSβπ΄)) |
134 | | eqid 2733 |
. . . . . . . . . . 11
β’
(0gβπ΄) = (0gβπ΄) |
135 | | eqid 2733 |
. . . . . . . . . . 11
β’
(0gβ(Scalarβπ΄)) =
(0gβ(Scalarβπ΄)) |
136 | 74, 73, 72, 75, 134, 135 | islinds5 32480 |
. . . . . . . . . 10
β’ ((π΄ β LMod β§ π β (Baseβπ΄)) β (π β (LIndSβπ΄) β βπ€ β ((Baseβ(Scalarβπ΄)) βm π)((π€ finSupp
(0gβ(Scalarβπ΄)) β§ (π΄ Ξ£g (π β π β¦ ((π€βπ)( Β·π
βπ΄)π))) = (0gβπ΄)) β π€ = (π Γ
{(0gβ(Scalarβπ΄))})))) |
137 | 136 | biimpa 478 |
. . . . . . . . 9
β’ (((π΄ β LMod β§ π β (Baseβπ΄)) β§ π β (LIndSβπ΄)) β βπ€ β ((Baseβ(Scalarβπ΄)) βm π)((π€ finSupp
(0gβ(Scalarβπ΄)) β§ (π΄ Ξ£g (π β π β¦ ((π€βπ)( Β·π
βπ΄)π))) = (0gβπ΄)) β π€ = (π Γ
{(0gβ(Scalarβπ΄))}))) |
138 | 15, 39, 133, 137 | syl21anc 837 |
. . . . . . . 8
β’ (π β βπ€ β ((Baseβ(Scalarβπ΄)) βm π)((π€ finSupp
(0gβ(Scalarβπ΄)) β§ (π΄ Ξ£g (π β π β¦ ((π€βπ)( Β·π
βπ΄)π))) = (0gβπ΄)) β π€ = (π Γ
{(0gβ(Scalarβπ΄))}))) |
139 | 138 | adantr 482 |
. . . . . . 7
β’ ((π β§ π β π) β βπ€ β ((Baseβ(Scalarβπ΄)) βm π)((π€ finSupp
(0gβ(Scalarβπ΄)) β§ (π΄ Ξ£g (π β π β¦ ((π€βπ)( Β·π
βπ΄)π))) = (0gβπ΄)) β π€ = (π Γ
{(0gβ(Scalarβπ΄))}))) |
140 | | eqid 2733 |
. . . . . . . . . 10
β’ (π β π β¦ (πππ)) = (π β π β¦ (πππ)) |
141 | | fvexd 6907 |
. . . . . . . . . 10
β’ ((π β§ π β π) β (0gβπΉ) β V) |
142 | | fedgmullem.y |
. . . . . . . . . . 11
β’ (π β π β (LBasisβπ΅)) |
143 | 142 | adantr 482 |
. . . . . . . . . 10
β’ ((π β§ π β π) β π β (LBasisβπ΅)) |
144 | 16 | adantr 482 |
. . . . . . . . . 10
β’ ((π β§ π β π) β π β (LBasisβπΆ)) |
145 | | fedgmullem2.1 |
. . . . . . . . . . . . . . 15
β’ (π β π β (Baseβ((Scalarβπ΄) freeLMod (π Γ π)))) |
146 | | fvexd 6907 |
. . . . . . . . . . . . . . . 16
β’ (π β (Scalarβπ΄) β V) |
147 | 142, 16 | xpexd 7738 |
. . . . . . . . . . . . . . . 16
β’ (π β (π Γ π) β V) |
148 | | eqid 2733 |
. . . . . . . . . . . . . . . . 17
β’
((Scalarβπ΄)
freeLMod (π Γ π)) = ((Scalarβπ΄) freeLMod (π Γ π)) |
149 | | eqid 2733 |
. . . . . . . . . . . . . . . . 17
β’
(Baseβ((Scalarβπ΄) freeLMod (π Γ π))) = (Baseβ((Scalarβπ΄) freeLMod (π Γ π))) |
150 | 148, 73, 135, 149 | frlmelbas 21311 |
. . . . . . . . . . . . . . . 16
β’
(((Scalarβπ΄)
β V β§ (π Γ
π) β V) β (π β
(Baseβ((Scalarβπ΄) freeLMod (π Γ π))) β (π β ((Baseβ(Scalarβπ΄)) βm (π Γ π)) β§ π finSupp
(0gβ(Scalarβπ΄))))) |
151 | 146, 147,
150 | syl2anc 585 |
. . . . . . . . . . . . . . 15
β’ (π β (π β (Baseβ((Scalarβπ΄) freeLMod (π Γ π))) β (π β ((Baseβ(Scalarβπ΄)) βm (π Γ π)) β§ π finSupp
(0gβ(Scalarβπ΄))))) |
152 | 145, 151 | mpbid 231 |
. . . . . . . . . . . . . 14
β’ (π β (π β ((Baseβ(Scalarβπ΄)) βm (π Γ π)) β§ π finSupp
(0gβ(Scalarβπ΄)))) |
153 | 152 | simpld 496 |
. . . . . . . . . . . . 13
β’ (π β π β ((Baseβ(Scalarβπ΄)) βm (π Γ π))) |
154 | | fvexd 6907 |
. . . . . . . . . . . . . 14
β’ (π β
(Baseβ(Scalarβπ΄)) β V) |
155 | 154, 147 | elmapd 8834 |
. . . . . . . . . . . . 13
β’ (π β (π β ((Baseβ(Scalarβπ΄)) βm (π Γ π)) β π:(π Γ π)βΆ(Baseβ(Scalarβπ΄)))) |
156 | 153, 155 | mpbid 231 |
. . . . . . . . . . . 12
β’ (π β π:(π Γ π)βΆ(Baseβ(Scalarβπ΄))) |
157 | 156 | ffnd 6719 |
. . . . . . . . . . 11
β’ (π β π Fn (π Γ π)) |
158 | 157 | adantr 482 |
. . . . . . . . . 10
β’ ((π β§ π β π) β π Fn (π Γ π)) |
159 | | simpr 486 |
. . . . . . . . . 10
β’ ((π β§ π β π) β π β π) |
160 | 152 | simprd 497 |
. . . . . . . . . . . 12
β’ (π β π finSupp
(0gβ(Scalarβπ΄))) |
161 | | drngring 20364 |
. . . . . . . . . . . . . . . 16
β’ (πΈ β DivRing β πΈ β Ring) |
162 | 1, 161 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β πΈ β Ring) |
163 | | ringmnd 20066 |
. . . . . . . . . . . . . . 15
β’ (πΈ β Ring β πΈ β Mnd) |
164 | 162, 163 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β πΈ β Mnd) |
165 | | subrgsubg 20325 |
. . . . . . . . . . . . . . . . 17
β’ (π β (SubRingβπΈ) β π β (SubGrpβπΈ)) |
166 | 9, 165 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β π β (SubGrpβπΈ)) |
167 | | eqid 2733 |
. . . . . . . . . . . . . . . . 17
β’
(0gβπΈ) = (0gβπΈ) |
168 | 167 | subg0cl 19014 |
. . . . . . . . . . . . . . . 16
β’ (π β (SubGrpβπΈ) β
(0gβπΈ)
β π) |
169 | 166, 168 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β (0gβπΈ) β π) |
170 | 46, 169 | sseldd 3984 |
. . . . . . . . . . . . . 14
β’ (π β (0gβπΈ) β π) |
171 | 5, 21, 167 | ress0g 18653 |
. . . . . . . . . . . . . 14
β’ ((πΈ β Mnd β§
(0gβπΈ)
β π β§ π β (BaseβπΈ)) β
(0gβπΈ) =
(0gβπΉ)) |
172 | 164, 170,
23, 171 | syl3anc 1372 |
. . . . . . . . . . . . 13
β’ (π β (0gβπΈ) = (0gβπΉ)) |
173 | 54 | fveq2d 6896 |
. . . . . . . . . . . . . 14
β’ (π β (0gβπΎ) =
(0gβ(ScalarβπΆ))) |
174 | 11, 167 | subrg0 20326 |
. . . . . . . . . . . . . . 15
β’ (π β (SubRingβπΈ) β
(0gβπΈ) =
(0gβπΎ)) |
175 | 9, 174 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (0gβπΈ) = (0gβπΎ)) |
176 | 60 | fveq2d 6896 |
. . . . . . . . . . . . . 14
β’ (π β
(0gβ(Scalarβπ΄)) =
(0gβ(ScalarβπΆ))) |
177 | 173, 175,
176 | 3eqtr4d 2783 |
. . . . . . . . . . . . 13
β’ (π β (0gβπΈ) =
(0gβ(Scalarβπ΄))) |
178 | 172, 177 | eqtr3d 2775 |
. . . . . . . . . . . 12
β’ (π β (0gβπΉ) =
(0gβ(Scalarβπ΄))) |
179 | 160, 178 | breqtrrd 5177 |
. . . . . . . . . . 11
β’ (π β π finSupp (0gβπΉ)) |
180 | 179 | adantr 482 |
. . . . . . . . . 10
β’ ((π β§ π β π) β π finSupp (0gβπΉ)) |
181 | 140, 141,
143, 144, 158, 159, 180 | fsuppcurry1 31950 |
. . . . . . . . 9
β’ ((π β§ π β π) β (π β π β¦ (πππ)) finSupp (0gβπΉ)) |
182 | 178 | adantr 482 |
. . . . . . . . 9
β’ ((π β§ π β π) β (0gβπΉ) =
(0gβ(Scalarβπ΄))) |
183 | 181, 182 | breqtrd 5175 |
. . . . . . . 8
β’ ((π β§ π β π) β (π β π β¦ (πππ)) finSupp
(0gβ(Scalarβπ΄))) |
184 | | eqidd 2734 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π) β (π β π β¦ (πππ)) = (π β π β¦ (πππ))) |
185 | 156 | fovcdmda 7578 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ (π β π β§ π β π)) β (πππ) β (Baseβ(Scalarβπ΄))) |
186 | 185 | anassrs 469 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β π) β§ π β π) β (πππ) β (Baseβ(Scalarβπ΄))) |
187 | 184, 186 | fvmpt2d 7012 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β π) β§ π β π) β ((π β π β¦ (πππ))βπ) = (πππ)) |
188 | 187 | oveq1d 7424 |
. . . . . . . . . . . . 13
β’ (((π β§ π β π) β§ π β π) β (((π β π β¦ (πππ))βπ)( Β·π
βπ΄)π) = ((πππ)( Β·π
βπ΄)π)) |
189 | 119 | ad2antrr 725 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β π) β§ π β π) β (
Β·π βπ΄) = ( Β·π
βπ΅)) |
190 | 189 | oveqd 7426 |
. . . . . . . . . . . . 13
β’ (((π β§ π β π) β§ π β π) β ((πππ)( Β·π
βπ΄)π) = ((πππ)( Β·π
βπ΅)π)) |
191 | 188, 190 | eqtrd 2773 |
. . . . . . . . . . . 12
β’ (((π β§ π β π) β§ π β π) β (((π β π β¦ (πππ))βπ)( Β·π
βπ΄)π) = ((πππ)( Β·π
βπ΅)π)) |
192 | 191 | mpteq2dva 5249 |
. . . . . . . . . . 11
β’ ((π β§ π β π) β (π β π β¦ (((π β π β¦ (πππ))βπ)( Β·π
βπ΄)π)) = (π β π β¦ ((πππ)( Β·π
βπ΅)π))) |
193 | 192 | oveq2d 7425 |
. . . . . . . . . 10
β’ ((π β§ π β π) β (π΄ Ξ£g (π β π β¦ (((π β π β¦ (πππ))βπ)( Β·π
βπ΄)π))) = (π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) |
194 | 1 | adantr 482 |
. . . . . . . . . . . 12
β’ ((π β§ π β π) β πΈ β DivRing) |
195 | 9 | adantr 482 |
. . . . . . . . . . . 12
β’ ((π β§ π β π) β π β (SubRingβπΈ)) |
196 | 2 | adantr 482 |
. . . . . . . . . . . 12
β’ ((π β§ π β π) β πΎ β DivRing) |
197 | 10, 194, 195, 11, 196, 144 | drgextgsum 32682 |
. . . . . . . . . . 11
β’ ((π β§ π β π) β (πΈ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))) = (π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) |
198 | 3 | adantr 482 |
. . . . . . . . . . . 12
β’ ((π β§ π β π) β π β (SubRingβπΈ)) |
199 | 104 | adantr 482 |
. . . . . . . . . . . 12
β’ ((π β§ π β π) β πΉ β DivRing) |
200 | 117, 194,
198, 5, 199, 144 | drgextgsum 32682 |
. . . . . . . . . . 11
β’ ((π β§ π β π) β (πΈ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))) = (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) |
201 | 197, 200 | eqtr3d 2775 |
. . . . . . . . . 10
β’ ((π β§ π β π) β (π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))) = (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) |
202 | 193, 201 | eqtrd 2773 |
. . . . . . . . 9
β’ ((π β§ π β π) β (π΄ Ξ£g (π β π β¦ (((π β π β¦ (πππ))βπ)( Β·π
βπ΄)π))) = (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) |
203 | 142 | mptexd 7226 |
. . . . . . . . . . . . . 14
β’ (π β (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) β V) |
204 | | eqid 2733 |
. . . . . . . . . . . . . . . . . 18
β’
(0gβπ΅) = (0gβπ΅) |
205 | 117, 5 | sralvec 32675 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((πΈ β DivRing β§ πΉ β DivRing β§ π β (SubRingβπΈ)) β π΅ β LVec) |
206 | 1, 104, 3, 205 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β π΅ β LVec) |
207 | | lveclmod 20717 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π΅ β LVec β π΅ β LMod) |
208 | 206, 207 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β π΅ β LMod) |
209 | 208 | adantr 482 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π) β π΅ β LMod) |
210 | | lmodabl 20519 |
. . . . . . . . . . . . . . . . . . 19
β’ (π΅ β LMod β π΅ β Abel) |
211 | 209, 210 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π) β π΅ β Abel) |
212 | 117 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β π΅ = ((subringAlg βπΈ)βπ)) |
213 | 212, 3, 23 | srasubrg 32674 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β π β (SubRingβπ΅)) |
214 | | subrgsubg 20325 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (SubRingβπ΅) β π β (SubGrpβπ΅)) |
215 | 213, 214 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β π β (SubGrpβπ΅)) |
216 | 215 | adantr 482 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π) β π β (SubGrpβπ΅)) |
217 | 110 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ π β π) β§ π β π) β πΆ β LMod) |
218 | 61 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ π β π) β§ π β π) β (Baseβ(Scalarβπ΄)) =
(Baseβ(ScalarβπΆ))) |
219 | 186, 218 | eleqtrd 2836 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ π β π) β§ π β π) β (πππ) β (Baseβ(ScalarβπΆ))) |
220 | 20 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ π β π) β§ π β π) β π β (BaseβπΆ)) |
221 | | simpr 486 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ π β π) β§ π β π) β π β π) |
222 | 220, 221 | sseldd 3984 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ π β π) β§ π β π) β π β (BaseβπΆ)) |
223 | 17, 111, 112, 113 | lmodvscl 20489 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((πΆ β LMod β§ (πππ) β (Baseβ(ScalarβπΆ)) β§ π β (BaseβπΆ)) β ((πππ)( Β·π
βπΆ)π) β (BaseβπΆ)) |
224 | 217, 219,
222, 223 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π) β§ π β π) β ((πππ)( Β·π
βπΆ)π) β (BaseβπΆ)) |
225 | 125 | oveqd 7426 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β ((πππ)( Β·π
βπ΅)π) = ((πππ)( Β·π
βπΆ)π)) |
226 | 225 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π) β§ π β π) β ((πππ)( Β·π
βπ΅)π) = ((πππ)( Β·π
βπΆ)π)) |
227 | 32 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π) β§ π β π) β π = (BaseβπΆ)) |
228 | 224, 226,
227 | 3eltr4d 2849 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π) β§ π β π) β ((πππ)( Β·π
βπ΅)π) β π) |
229 | 228 | fmpttd 7115 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π) β (π β π β¦ ((πππ)( Β·π
βπ΅)π)):πβΆπ) |
230 | 212, 23 | srasca 20798 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β (πΈ βΎs π) = (Scalarβπ΅)) |
231 | 5, 230 | eqtrid 2785 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β πΉ = (Scalarβπ΅)) |
232 | 231 | adantr 482 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π) β πΉ = (Scalarβπ΅)) |
233 | | eqid 2733 |
. . . . . . . . . . . . . . . . . . 19
β’
(Baseβπ΅) =
(Baseβπ΅) |
234 | | ovexd 7444 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π) β§ π β π) β (πππ) β V) |
235 | 20, 33 | sstrd 3993 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β π β (BaseβπΈ)) |
236 | 235 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ (π β π β§ π β π)) β π β (BaseβπΈ)) |
237 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ (π β π β§ π β π)) β π β π) |
238 | 236, 237 | sseldd 3984 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ (π β π β§ π β π)) β π β (BaseβπΈ)) |
239 | 238 | anassrs 469 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π) β§ π β π) β π β (BaseβπΈ)) |
240 | 212, 23 | srabase 20792 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β (BaseβπΈ) = (Baseβπ΅)) |
241 | 240 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π) β§ π β π) β (BaseβπΈ) = (Baseβπ΅)) |
242 | 239, 241 | eleqtrd 2836 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π) β§ π β π) β π β (Baseβπ΅)) |
243 | | eqid 2733 |
. . . . . . . . . . . . . . . . . . 19
β’
(0gβπΉ) = (0gβπΉ) |
244 | | eqid 2733 |
. . . . . . . . . . . . . . . . . . 19
β’ (
Β·π βπ΅) = ( Β·π
βπ΅) |
245 | 144, 209,
232, 233, 234, 242, 204, 243, 244, 181 | mptscmfsupp0 20537 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π) β (π β π β¦ ((πππ)( Β·π
βπ΅)π)) finSupp (0gβπ΅)) |
246 | 204, 211,
144, 216, 229, 245 | gsumsubgcl 19788 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π) β (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))) β π) |
247 | 231 | fveq2d 6896 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (BaseβπΉ) =
(Baseβ(Scalarβπ΅))) |
248 | 25, 247 | eqtrd 2773 |
. . . . . . . . . . . . . . . . . 18
β’ (π β π = (Baseβ(Scalarβπ΅))) |
249 | 248 | adantr 482 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π) β π = (Baseβ(Scalarβπ΅))) |
250 | 246, 249 | eleqtrd 2836 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π) β (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))) β (Baseβ(Scalarβπ΅))) |
251 | 250 | fmpttd 7115 |
. . . . . . . . . . . . . . 15
β’ (π β (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))):πβΆ(Baseβ(Scalarβπ΅))) |
252 | 251 | ffund 6722 |
. . . . . . . . . . . . . 14
β’ (π β Fun (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))))) |
253 | | fvexd 6907 |
. . . . . . . . . . . . . 14
β’ (π β
(0gβ(Scalarβπ΅)) β V) |
254 | | fconstmpt 5739 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π Γ
{(0gβ(Scalarβπ΄))}) = (π β π β¦
(0gβ(Scalarβπ΄))) |
255 | 254 | eqeq2i 2746 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β π β¦ (πππ)) = (π Γ
{(0gβ(Scalarβπ΄))}) β (π β π β¦ (πππ)) = (π β π β¦
(0gβ(Scalarβπ΄)))) |
256 | | ovex 7442 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (πππ) β V |
257 | 256 | rgenw 3066 |
. . . . . . . . . . . . . . . . . . . . 21
β’
βπ β
π (πππ) β V |
258 | | mpteqb 7018 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(βπ β
π (πππ) β V β ((π β π β¦ (πππ)) = (π β π β¦
(0gβ(Scalarβπ΄))) β βπ β π (πππ) = (0gβ(Scalarβπ΄)))) |
259 | 257, 258 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β π β¦ (πππ)) = (π β π β¦
(0gβ(Scalarβπ΄))) β βπ β π (πππ) = (0gβ(Scalarβπ΄))) |
260 | 255, 259 | bitri 275 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β π β¦ (πππ)) = (π Γ
{(0gβ(Scalarβπ΄))}) β βπ β π (πππ) = (0gβ(Scalarβπ΄))) |
261 | 260 | necon3abii 2988 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))}) β Β¬ βπ β π (πππ) = (0gβ(Scalarβπ΄))) |
262 | | df-ov 7412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (πππ) = (πββ¨π, πβ©) |
263 | 262 | eqcomi 2742 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (πββ¨π, πβ©) = (πππ) |
264 | 263 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ π β π) β§ π β π) β (πββ¨π, πβ©) = (πππ)) |
265 | 264 | eqeq1d 2735 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ π β π) β§ π β π) β ((πββ¨π, πβ©) =
(0gβ(Scalarβπ΄)) β (πππ) = (0gβ(Scalarβπ΄)))) |
266 | 265 | necon3abid 2978 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π) β§ π β π) β ((πββ¨π, πβ©) β
(0gβ(Scalarβπ΄)) β Β¬ (πππ) = (0gβ(Scalarβπ΄)))) |
267 | 266 | rexbidva 3177 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π) β (βπ β π (πββ¨π, πβ©) β
(0gβ(Scalarβπ΄)) β βπ β π Β¬ (πππ) = (0gβ(Scalarβπ΄)))) |
268 | | rexnal 3101 |
. . . . . . . . . . . . . . . . . . 19
β’
(βπ β
π Β¬ (πππ) = (0gβ(Scalarβπ΄)) β Β¬ βπ β π (πππ) = (0gβ(Scalarβπ΄))) |
269 | 267, 268 | bitr2di 288 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π) β (Β¬ βπ β π (πππ) = (0gβ(Scalarβπ΄)) β βπ β π (πββ¨π, πβ©) β
(0gβ(Scalarβπ΄)))) |
270 | 261, 269 | bitrid 283 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π) β ((π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))}) β βπ β π (πββ¨π, πβ©) β
(0gβ(Scalarβπ΄)))) |
271 | 270 | rabbidva 3440 |
. . . . . . . . . . . . . . . 16
β’ (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})} = {π β π β£ βπ β π (πββ¨π, πβ©) β
(0gβ(Scalarβπ΄))}) |
272 | | fveq2 6892 |
. . . . . . . . . . . . . . . . . 18
β’ (π§ = β¨π, πβ© β (πβπ§) = (πββ¨π, πβ©)) |
273 | 272 | neeq1d 3001 |
. . . . . . . . . . . . . . . . 17
β’ (π§ = β¨π, πβ© β ((πβπ§) β
(0gβ(Scalarβπ΄)) β (πββ¨π, πβ©) β
(0gβ(Scalarβπ΄)))) |
274 | 273 | dmrab 31737 |
. . . . . . . . . . . . . . . 16
β’ dom
{π§ β (π Γ π) β£ (πβπ§) β
(0gβ(Scalarβπ΄))} = {π β π β£ βπ β π (πββ¨π, πβ©) β
(0gβ(Scalarβπ΄))} |
275 | 271, 274 | eqtr4di 2791 |
. . . . . . . . . . . . . . 15
β’ (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})} = dom {π§ β (π Γ π) β£ (πβπ§) β
(0gβ(Scalarβπ΄))}) |
276 | | fvexd 6907 |
. . . . . . . . . . . . . . . . . 18
β’ (π β
(0gβ(Scalarβπ΄)) β V) |
277 | | suppvalfn 8154 |
. . . . . . . . . . . . . . . . . 18
β’ ((π Fn (π Γ π) β§ (π Γ π) β V β§
(0gβ(Scalarβπ΄)) β V) β (π supp
(0gβ(Scalarβπ΄))) = {π§ β (π Γ π) β£ (πβπ§) β
(0gβ(Scalarβπ΄))}) |
278 | 157, 147,
276, 277 | syl3anc 1372 |
. . . . . . . . . . . . . . . . 17
β’ (π β (π supp
(0gβ(Scalarβπ΄))) = {π§ β (π Γ π) β£ (πβπ§) β
(0gβ(Scalarβπ΄))}) |
279 | 160 | fsuppimpd 9369 |
. . . . . . . . . . . . . . . . 17
β’ (π β (π supp
(0gβ(Scalarβπ΄))) β Fin) |
280 | 278, 279 | eqeltrrd 2835 |
. . . . . . . . . . . . . . . 16
β’ (π β {π§ β (π Γ π) β£ (πβπ§) β
(0gβ(Scalarβπ΄))} β Fin) |
281 | | dmfi 9330 |
. . . . . . . . . . . . . . . 16
β’ ({π§ β (π Γ π) β£ (πβπ§) β
(0gβ(Scalarβπ΄))} β Fin β dom {π§ β (π Γ π) β£ (πβπ§) β
(0gβ(Scalarβπ΄))} β Fin) |
282 | 280, 281 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β dom {π§ β (π Γ π) β£ (πβπ§) β
(0gβ(Scalarβπ΄))} β Fin) |
283 | 275, 282 | eqeltrd 2834 |
. . . . . . . . . . . . . 14
β’ (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})} β Fin) |
284 | | nfv 1918 |
. . . . . . . . . . . . . . . . . . 19
β’
β²ππ |
285 | | nfcv 2904 |
. . . . . . . . . . . . . . . . . . . . 21
β’
β²ππ |
286 | | nfmpt1 5257 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
β²π(π β π β¦ (πππ)) |
287 | | nfcv 2904 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
β²π(π Γ
{(0gβ(Scalarβπ΄))}) |
288 | 286, 287 | nfne 3044 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
β²π(π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))}) |
289 | 288, 285 | nfrabw 3469 |
. . . . . . . . . . . . . . . . . . . . 21
β’
β²π{π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})} |
290 | 285, 289 | nfdif 4126 |
. . . . . . . . . . . . . . . . . . . 20
β’
β²π(π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})}) |
291 | 290 | nfcri 2891 |
. . . . . . . . . . . . . . . . . . 19
β’
β²π π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})}) |
292 | 284, 291 | nfan 1903 |
. . . . . . . . . . . . . . . . . 18
β’
β²π(π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) |
293 | | simpr 486 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) |
294 | 293 | eldifad 3961 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β π β π) |
295 | 293 | eldifbd 3962 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β Β¬ π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})}) |
296 | | oveq1 7416 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (π = π β (πππ) = (πππ)) |
297 | 296 | mpteq2dv 5251 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (π = π β (π β π β¦ (πππ)) = (π β π β¦ (πππ))) |
298 | 297 | neeq1d 3001 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π = π β ((π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))}) β (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))}))) |
299 | 298 | elrab 3684 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})} β (π β π β§ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))}))) |
300 | 295, 299 | sylnib 328 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β Β¬ (π β π β§ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))}))) |
301 | 294, 300 | mpnanrd 411 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β Β¬ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})) |
302 | | nne 2945 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (Β¬
(π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))}) β (π β π β¦ (πππ)) = (π Γ
{(0gβ(Scalarβπ΄))})) |
303 | 301, 302 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β (π β π β¦ (πππ)) = (π Γ
{(0gβ(Scalarβπ΄))})) |
304 | 303, 254 | eqtrdi 2789 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β (π β π β¦ (πππ)) = (π β π β¦
(0gβ(Scalarβπ΄)))) |
305 | | ovex 7442 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (πππ) β V |
306 | 305 | rgenw 3066 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
βπ β
π (πππ) β V |
307 | | mpteqb 7018 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
(βπ β
π (πππ) β V β ((π β π β¦ (πππ)) = (π β π β¦
(0gβ(Scalarβπ΄))) β βπ β π (πππ) = (0gβ(Scalarβπ΄)))) |
308 | 306, 307 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β π β¦ (πππ)) = (π β π β¦
(0gβ(Scalarβπ΄))) β βπ β π (πππ) = (0gβ(Scalarβπ΄))) |
309 | 304, 308 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β βπ β π (πππ) = (0gβ(Scalarβπ΄))) |
310 | 309 | r19.21bi 3249 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β§ π β π) β (πππ) = (0gβ(Scalarβπ΄))) |
311 | 310 | oveq1d 7424 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β§ π β π) β ((πππ)( Β·π
βπ΅)π) = ((0gβ(Scalarβπ΄))(
Β·π βπ΅)π)) |
312 | 117, 1, 3 | drgext0g 32677 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β (0gβπΈ) = (0gβπ΅)) |
313 | 117, 1, 3 | drgext0gsca 32679 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β (0gβπ΅) =
(0gβ(Scalarβπ΅))) |
314 | 312, 177,
313 | 3eqtr3d 2781 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β
(0gβ(Scalarβπ΄)) =
(0gβ(Scalarβπ΅))) |
315 | 314 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β§ π β π) β
(0gβ(Scalarβπ΄)) =
(0gβ(Scalarβπ΅))) |
316 | 315 | oveq1d 7424 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β§ π β π) β
((0gβ(Scalarβπ΄))( Β·π
βπ΅)π) = ((0gβ(Scalarβπ΅))(
Β·π βπ΅)π)) |
317 | 208 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β§ π β π) β π΅ β LMod) |
318 | 294, 242 | syldanl 603 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β§ π β π) β π β (Baseβπ΅)) |
319 | | eqid 2733 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(Scalarβπ΅) =
(Scalarβπ΅) |
320 | | eqid 2733 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(0gβ(Scalarβπ΅)) =
(0gβ(Scalarβπ΅)) |
321 | 233, 319,
244, 320, 204 | lmod0vs 20505 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π΅ β LMod β§ π β (Baseβπ΅)) β
((0gβ(Scalarβπ΅))( Β·π
βπ΅)π) = (0gβπ΅)) |
322 | 317, 318,
321 | syl2anc 585 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β§ π β π) β
((0gβ(Scalarβπ΅))( Β·π
βπ΅)π) = (0gβπ΅)) |
323 | 311, 316,
322 | 3eqtrd 2777 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β§ π β π) β ((πππ)( Β·π
βπ΅)π) = (0gβπ΅)) |
324 | 292, 323 | mpteq2da 5247 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β (π β π β¦ ((πππ)( Β·π
βπ΅)π)) = (π β π β¦ (0gβπ΅))) |
325 | 324 | oveq2d 7425 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))) = (π΅ Ξ£g (π β π β¦ (0gβπ΅)))) |
326 | 208, 210 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β π΅ β Abel) |
327 | | ablgrp 19653 |
. . . . . . . . . . . . . . . . . . 19
β’ (π΅ β Abel β π΅ β Grp) |
328 | | grpmnd 18826 |
. . . . . . . . . . . . . . . . . . 19
β’ (π΅ β Grp β π΅ β Mnd) |
329 | 326, 327,
328 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
β’ (π β π΅ β Mnd) |
330 | 204 | gsumz 18717 |
. . . . . . . . . . . . . . . . . 18
β’ ((π΅ β Mnd β§ π β (LBasisβπΆ)) β (π΅ Ξ£g (π β π β¦ (0gβπ΅))) = (0gβπ΅)) |
331 | 329, 16, 330 | syl2anc 585 |
. . . . . . . . . . . . . . . . 17
β’ (π β (π΅ Ξ£g (π β π β¦ (0gβπ΅))) = (0gβπ΅)) |
332 | 331 | adantr 482 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β (π΅ Ξ£g (π β π β¦ (0gβπ΅))) = (0gβπ΅)) |
333 | 313 | adantr 482 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β (0gβπ΅) =
(0gβ(Scalarβπ΅))) |
334 | 325, 332,
333 | 3eqtrd 2777 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β (π β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))) =
(0gβ(Scalarβπ΅))) |
335 | 334, 142 | suppss2 8185 |
. . . . . . . . . . . . . 14
β’ (π β ((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) supp
(0gβ(Scalarβπ΅))) β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})}) |
336 | | suppssfifsupp 9378 |
. . . . . . . . . . . . . 14
β’ ((((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) β V β§ Fun (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) β§
(0gβ(Scalarβπ΅)) β V) β§ ({π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})} β Fin β§ ((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) supp
(0gβ(Scalarβπ΅))) β {π β π β£ (π β π β¦ (πππ)) β (π Γ
{(0gβ(Scalarβπ΄))})})) β (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) finSupp
(0gβ(Scalarβπ΅))) |
337 | 203, 252,
253, 283, 335, 336 | syl32anc 1379 |
. . . . . . . . . . . . 13
β’ (π β (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) finSupp
(0gβ(Scalarβπ΅))) |
338 | | eqidd 2734 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) = (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))))) |
339 | | ovexd 7444 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π) β (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))) β V) |
340 | 338, 339 | fvmpt2d 7012 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π) β ((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))))βπ) = (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) |
341 | 340 | oveq1d 7424 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π) β (((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))))βπ)( Β·π
βπ΅)π) = ((π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))( Β·π
βπ΅)π)) |
342 | 341 | mpteq2dva 5249 |
. . . . . . . . . . . . . . 15
β’ (π β (π β π β¦ (((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))))βπ)( Β·π
βπ΅)π)) = (π β π β¦ ((π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))( Β·π
βπ΅)π))) |
343 | 342 | oveq2d 7425 |
. . . . . . . . . . . . . 14
β’ (π β (π΅ Ξ£g (π β π β¦ (((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))))βπ)( Β·π
βπ΅)π))) = (π΅ Ξ£g (π β π β¦ ((π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))( Β·π
βπ΅)π)))) |
344 | 119 | adantr 482 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π) β (
Β·π βπ΄) = ( Β·π
βπ΅)) |
345 | 43 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β§ π β π) β§ π β π) β (.rβπΈ) = (
Β·π βπ΄)) |
346 | 345 | oveqd 7426 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ π β π) β§ π β π) β ((πππ)(.rβπΈ)π) = ((πππ)( Β·π
βπ΄)π)) |
347 | 346 | mpteq2dva 5249 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π) β (π β π β¦ ((πππ)(.rβπΈ)π)) = (π β π β¦ ((πππ)( Β·π
βπ΄)π))) |
348 | 118 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β§ π β π) β (.rβπΈ) = (
Β·π βπ΅)) |
349 | 348 | oveqd 7426 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β π) β ((πππ)(.rβπΈ)π) = ((πππ)( Β·π
βπ΅)π)) |
350 | 349 | mpteq2dv 5251 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π) β (π β π β¦ ((πππ)(.rβπΈ)π)) = (π β π β¦ ((πππ)( Β·π
βπ΅)π))) |
351 | 347, 350 | eqtr3d 2775 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β π) β (π β π β¦ ((πππ)( Β·π
βπ΄)π)) = (π β π β¦ ((πππ)( Β·π
βπ΅)π))) |
352 | 351 | oveq2d 7425 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π) β (π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΄)π))) = (π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) |
353 | | eqidd 2734 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π) β π = π) |
354 | 344, 352,
353 | oveq123d 7430 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π) β ((π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΄)π)))( Β·π
βπ΄)π) = ((π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))( Β·π
βπ΅)π)) |
355 | 201 | oveq1d 7424 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π) β ((π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))( Β·π
βπ΅)π) = ((π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))( Β·π
βπ΅)π)) |
356 | 354, 355 | eqtrd 2773 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π) β ((π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΄)π)))( Β·π
βπ΄)π) = ((π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))( Β·π
βπ΅)π)) |
357 | 356 | mpteq2dva 5249 |
. . . . . . . . . . . . . . . 16
β’ (π β (π β π β¦ ((π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΄)π)))( Β·π
βπ΄)π)) = (π β π β¦ ((π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))( Β·π
βπ΅)π))) |
358 | 357 | oveq2d 7425 |
. . . . . . . . . . . . . . 15
β’ (π β (π΄ Ξ£g (π β π β¦ ((π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΄)π)))( Β·π
βπ΄)π))) = (π΄ Ξ£g (π β π β¦ ((π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))( Β·π
βπ΅)π)))) |
359 | 10, 21 | sraring 20808 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((πΈ β Ring β§ π β (BaseβπΈ)) β π΄ β Ring) |
360 | 162, 36, 359 | syl2anc 585 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β π΄ β Ring) |
361 | | ringcmn 20099 |
. . . . . . . . . . . . . . . . . . 19
β’ (π΄ β Ring β π΄ β CMnd) |
362 | 360, 361 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ (π β π΄ β CMnd) |
363 | 162 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β§ (π β π β§ π β π)) β πΈ β Ring) |
364 | | eqid 2733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
(LBasisβπ΅) =
(LBasisβπ΅) |
365 | 233, 364 | lbsss 20688 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π β (LBasisβπ΅) β π β (Baseβπ΅)) |
366 | 142, 365 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π β π β (Baseβπ΅)) |
367 | 366, 240 | sseqtrrd 4024 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π β π β (BaseβπΈ)) |
368 | 367 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π β§ (π β π β§ π β π)) β π β (BaseβπΈ)) |
369 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π β§ (π β π β§ π β π)) β π β π) |
370 | 368, 369 | sseldd 3984 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β§ (π β π β§ π β π)) β π β (BaseβπΈ)) |
371 | 21, 67 | ringcl 20073 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((πΈ β Ring β§ π β (BaseβπΈ) β§ π β (BaseβπΈ)) β (π(.rβπΈ)π) β (BaseβπΈ)) |
372 | 363, 238,
370, 371 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ (π β π β§ π β π)) β (π(.rβπΈ)π) β (BaseβπΈ)) |
373 | 37 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ (π β π β§ π β π)) β (BaseβπΈ) = (Baseβπ΄)) |
374 | 372, 373 | eleqtrd 2836 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ (π β π β§ π β π)) β (π(.rβπΈ)π) β (Baseβπ΄)) |
375 | 374 | ralrimivva 3201 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β βπ β π βπ β π (π(.rβπΈ)π) β (Baseβπ΄)) |
376 | | fedgmullem.d |
. . . . . . . . . . . . . . . . . . . . 21
β’ π· = (π β π, π β π β¦ (π(.rβπΈ)π)) |
377 | 376 | fmpo 8054 |
. . . . . . . . . . . . . . . . . . . 20
β’
(βπ β
π βπ β π (π(.rβπΈ)π) β (Baseβπ΄) β π·:(π Γ π)βΆ(Baseβπ΄)) |
378 | 375, 377 | sylib 217 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β π·:(π Γ π)βΆ(Baseβπ΄)) |
379 | 72, 73, 75, 74, 15, 156, 378, 147 | lcomf 20511 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (π βf (
Β·π βπ΄)π·):(π Γ π)βΆ(Baseβπ΄)) |
380 | 72, 73, 75, 74, 15, 156, 378, 147, 134, 135, 160 | lcomfsupp 20512 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (π βf (
Β·π βπ΄)π·) finSupp (0gβπ΄)) |
381 | 74, 134, 362, 142, 16, 379, 380 | gsumxp 19844 |
. . . . . . . . . . . . . . . . 17
β’ (π β (π΄ Ξ£g (π βf (
Β·π βπ΄)π·)) = (π΄ Ξ£g (π β π β¦ (π΄ Ξ£g (π β π β¦ (π(π βf (
Β·π βπ΄)π·)π)))))) |
382 | | fedgmullem2.2 |
. . . . . . . . . . . . . . . . 17
β’ (π β (π΄ Ξ£g (π βf (
Β·π βπ΄)π·)) = (0gβπ΄)) |
383 | 162 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((π β§ π β π β§ π β π) β πΈ β Ring) |
384 | 156 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ ((π β§ π β π β§ π β π) β π:(π Γ π)βΆ(Baseβ(Scalarβπ΄))) |
385 | 57, 55 | eqtrd 2773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ (π β π = (Baseβ(ScalarβπΆ))) |
386 | 385, 36 | eqsstrrd 4022 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ (π β
(Baseβ(ScalarβπΆ)) β (BaseβπΈ)) |
387 | 61, 386 | eqsstrd 4021 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (π β
(Baseβ(Scalarβπ΄)) β (BaseβπΈ)) |
388 | 387, 37 | sseqtrd 4023 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (π β
(Baseβ(Scalarβπ΄)) β (Baseβπ΄)) |
389 | 388 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ ((π β§ π β π β§ π β π) β (Baseβ(Scalarβπ΄)) β (Baseβπ΄)) |
390 | 384, 389 | fssd 6736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β§ π β π β§ π β π) β π:(π Γ π)βΆ(Baseβπ΄)) |
391 | | simp2 1138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β§ π β π β§ π β π) β π β π) |
392 | | simp3 1139 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β§ π β π β§ π β π) β π β π) |
393 | 390, 391,
392 | fovcdmd 7579 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((π β§ π β π β§ π β π) β (πππ) β (Baseβπ΄)) |
394 | 37 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((π β§ π β π β§ π β π) β (BaseβπΈ) = (Baseβπ΄)) |
395 | 393, 394 | eleqtrrd 2837 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((π β§ π β π β§ π β π) β (πππ) β (BaseβπΈ)) |
396 | 238 | 3impb 1116 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((π β§ π β π β§ π β π) β π β (BaseβπΈ)) |
397 | 370 | 3impb 1116 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((π β§ π β π β§ π β π) β π β (BaseβπΈ)) |
398 | 21, 67 | ringass 20076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((πΈ β Ring β§ ((πππ) β (BaseβπΈ) β§ π β (BaseβπΈ) β§ π β (BaseβπΈ))) β (((πππ)(.rβπΈ)π)(.rβπΈ)π) = ((πππ)(.rβπΈ)(π(.rβπΈ)π))) |
399 | 383, 395,
396, 397, 398 | syl13anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((π β§ π β π β§ π β π) β (((πππ)(.rβπΈ)π)(.rβπΈ)π) = ((πππ)(.rβπΈ)(π(.rβπΈ)π))) |
400 | 399 | mpoeq3dva 7486 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π β (π β π, π β π β¦ (((πππ)(.rβπΈ)π)(.rβπΈ)π)) = (π β π, π β π β¦ ((πππ)(.rβπΈ)(π(.rβπΈ)π)))) |
401 | | ovexd 7444 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((π β§ π β π β§ π β π) β (πππ) β V) |
402 | | ovexd 7444 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((π β§ π β π β§ π β π) β (π(.rβπΈ)π) β V) |
403 | | fnov 7540 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (π Fn (π Γ π) β π = (π β π, π β π β¦ (πππ))) |
404 | 157, 403 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (π β π = (π β π, π β π β¦ (πππ))) |
405 | 376 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (π β π· = (π β π, π β π β¦ (π(.rβπΈ)π))) |
406 | 142, 16, 401, 402, 404, 405 | offval22 8074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π β (π βf
(.rβπΈ)π·) = (π β π, π β π β¦ ((πππ)(.rβπΈ)(π(.rβπΈ)π)))) |
407 | 43 | ofeqd 7672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (π β βf
(.rβπΈ) =
βf ( Β·π βπ΄)) |
408 | 407 | oveqd 7426 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π β (π βf
(.rβπΈ)π·) = (π βf (
Β·π βπ΄)π·)) |
409 | 400, 406,
408 | 3eqtr2rd 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π β (π βf (
Β·π βπ΄)π·) = (π β π, π β π β¦ (((πππ)(.rβπΈ)π)(.rβπΈ)π))) |
410 | 409 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β§ π β π) β§ π β π) β (π βf (
Β·π βπ΄)π·) = (π β π, π β π β¦ (((πππ)(.rβπΈ)π)(.rβπΈ)π))) |
411 | 410 | oveqd 7426 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((π β§ π β π) β§ π β π) β (π(π βf (
Β·π βπ΄)π·)π) = (π(π β π, π β π β¦ (((πππ)(.rβπΈ)π)(.rβπΈ)π))π)) |
412 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β§ π β π) β§ π β π) β π β π) |
413 | | ovexd 7444 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β§ π β π) β§ π β π) β (((πππ)(.rβπΈ)π)(.rβπΈ)π) β V) |
414 | | eqid 2733 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π β π, π β π β¦ (((πππ)(.rβπΈ)π)(.rβπΈ)π)) = (π β π, π β π β¦ (((πππ)(.rβπΈ)π)(.rβπΈ)π)) |
415 | 414 | ovmpt4g 7555 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π β π β§ π β π β§ (((πππ)(.rβπΈ)π)(.rβπΈ)π) β V) β (π(π β π, π β π β¦ (((πππ)(.rβπΈ)π)(.rβπΈ)π))π) = (((πππ)(.rβπΈ)π)(.rβπΈ)π)) |
416 | 412, 221,
413, 415 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((π β§ π β π) β§ π β π) β (π(π β π, π β π β¦ (((πππ)(.rβπΈ)π)(.rβπΈ)π))π) = (((πππ)(.rβπΈ)π)(.rβπΈ)π)) |
417 | 411, 416 | eqtrd 2773 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β§ π β π) β§ π β π) β (π(π βf (
Β·π βπ΄)π·)π) = (((πππ)(.rβπΈ)π)(.rβπΈ)π)) |
418 | 417 | mpteq2dva 5249 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β π) β (π β π β¦ (π(π βf (
Β·π βπ΄)π·)π)) = (π β π β¦ (((πππ)(.rβπΈ)π)(.rβπΈ)π))) |
419 | 418 | oveq2d 7425 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π) β (πΈ Ξ£g (π β π β¦ (π(π βf (
Β·π βπ΄)π·)π))) = (πΈ Ξ£g (π β π β¦ (((πππ)(.rβπΈ)π)(.rβπΈ)π)))) |
420 | 162 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β π) β πΈ β Ring) |
421 | 367 | sselda 3983 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β π) β π β (BaseβπΈ)) |
422 | 162 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β§ π β π) β§ π β π) β πΈ β Ring) |
423 | 386 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((π β§ π β π) β§ π β π) β (Baseβ(ScalarβπΆ)) β (BaseβπΈ)) |
424 | 423, 219 | sseldd 3984 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β§ π β π) β§ π β π) β (πππ) β (BaseβπΈ)) |
425 | 21, 67 | ringcl 20073 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((πΈ β Ring β§ (πππ) β (BaseβπΈ) β§ π β (BaseβπΈ)) β ((πππ)(.rβπΈ)π) β (BaseβπΈ)) |
426 | 422, 424,
239, 425 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ π β π) β§ π β π) β ((πππ)(.rβπΈ)π) β (BaseβπΈ)) |
427 | 312 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β§ π β π) β (0gβπΈ) = (0gβπ΅)) |
428 | 245, 350,
427 | 3brtr4d 5181 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β π) β (π β π β¦ ((πππ)(.rβπΈ)π)) finSupp (0gβπΈ)) |
429 | 21, 167, 67, 420, 144, 421, 426, 428 | gsummulc1 20128 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π) β (πΈ Ξ£g (π β π β¦ (((πππ)(.rβπΈ)π)(.rβπΈ)π))) = ((πΈ Ξ£g (π β π β¦ ((πππ)(.rβπΈ)π)))(.rβπΈ)π)) |
430 | 419, 429 | eqtrd 2773 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β π) β (πΈ Ξ£g (π β π β¦ (π(π βf (
Β·π βπ΄)π·)π))) = ((πΈ Ξ£g (π β π β¦ ((πππ)(.rβπΈ)π)))(.rβπΈ)π)) |
431 | 144 | mptexd 7226 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π) β (π β π β¦ (π(π βf (
Β·π βπ΄)π·)π)) β V) |
432 | 15 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π) β π΄ β LMod) |
433 | 36 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π) β π β (BaseβπΈ)) |
434 | 10, 431, 194, 432, 433 | gsumsra 32199 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β π) β (πΈ Ξ£g (π β π β¦ (π(π βf (
Β·π βπ΄)π·)π))) = (π΄ Ξ£g (π β π β¦ (π(π βf (
Β·π βπ΄)π·)π)))) |
435 | 144 | mptexd 7226 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β§ π β π) β (π β π β¦ ((πππ)(.rβπΈ)π)) β V) |
436 | 10, 435, 194, 432, 433 | gsumsra 32199 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β π) β (πΈ Ξ£g (π β π β¦ ((πππ)(.rβπΈ)π))) = (π΄ Ξ£g (π β π β¦ ((πππ)(.rβπΈ)π)))) |
437 | 436 | oveq1d 7424 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π) β ((πΈ Ξ£g (π β π β¦ ((πππ)(.rβπΈ)π)))(.rβπΈ)π) = ((π΄ Ξ£g (π β π β¦ ((πππ)(.rβπΈ)π)))(.rβπΈ)π)) |
438 | 43 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β π) β (.rβπΈ) = (
Β·π βπ΄)) |
439 | 347 | oveq2d 7425 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β π) β (π΄ Ξ£g (π β π β¦ ((πππ)(.rβπΈ)π))) = (π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΄)π)))) |
440 | 438, 439,
353 | oveq123d 7430 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π) β ((π΄ Ξ£g (π β π β¦ ((πππ)(.rβπΈ)π)))(.rβπΈ)π) = ((π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΄)π)))( Β·π
βπ΄)π)) |
441 | 437, 440 | eqtrd 2773 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β π) β ((πΈ Ξ£g (π β π β¦ ((πππ)(.rβπΈ)π)))(.rβπΈ)π) = ((π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΄)π)))( Β·π
βπ΄)π)) |
442 | 430, 434,
441 | 3eqtr3d 2781 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π) β (π΄ Ξ£g (π β π β¦ (π(π βf (
Β·π βπ΄)π·)π))) = ((π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΄)π)))( Β·π
βπ΄)π)) |
443 | 442 | mpteq2dva 5249 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (π β π β¦ (π΄ Ξ£g (π β π β¦ (π(π βf (
Β·π βπ΄)π·)π)))) = (π β π β¦ ((π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΄)π)))( Β·π
βπ΄)π))) |
444 | 443 | oveq2d 7425 |
. . . . . . . . . . . . . . . . 17
β’ (π β (π΄ Ξ£g (π β π β¦ (π΄ Ξ£g (π β π β¦ (π(π βf (
Β·π βπ΄)π·)π))))) = (π΄ Ξ£g (π β π β¦ ((π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΄)π)))( Β·π
βπ΄)π)))) |
445 | 381, 382,
444 | 3eqtr3rd 2782 |
. . . . . . . . . . . . . . . 16
β’ (π β (π΄ Ξ£g (π β π β¦ ((π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΄)π)))( Β·π
βπ΄)π))) = (0gβπ΄)) |
446 | 10, 1, 9 | drgext0g 32677 |
. . . . . . . . . . . . . . . 16
β’ (π β (0gβπΈ) = (0gβπ΄)) |
447 | 445, 446,
312 | 3eqtr2d 2779 |
. . . . . . . . . . . . . . 15
β’ (π β (π΄ Ξ£g (π β π β¦ ((π΄ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΄)π)))( Β·π
βπ΄)π))) = (0gβπ΅)) |
448 | 10, 1, 9, 11, 2, 142 | drgextgsum 32682 |
. . . . . . . . . . . . . . . 16
β’ (π β (πΈ Ξ£g (π β π β¦ ((π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))( Β·π
βπ΅)π))) = (π΄ Ξ£g (π β π β¦ ((π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))( Β·π
βπ΅)π)))) |
449 | 117, 1, 3, 5, 104, 142 | drgextgsum 32682 |
. . . . . . . . . . . . . . . 16
β’ (π β (πΈ Ξ£g (π β π β¦ ((π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))( Β·π
βπ΅)π))) = (π΅ Ξ£g (π β π β¦ ((π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))( Β·π
βπ΅)π)))) |
450 | 448, 449 | eqtr3d 2775 |
. . . . . . . . . . . . . . 15
β’ (π β (π΄ Ξ£g (π β π β¦ ((π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))( Β·π
βπ΅)π))) = (π΅ Ξ£g (π β π β¦ ((π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))( Β·π
βπ΅)π)))) |
451 | 358, 447,
450 | 3eqtr3rd 2782 |
. . . . . . . . . . . . . 14
β’ (π β (π΅ Ξ£g (π β π β¦ ((π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))( Β·π
βπ΅)π))) = (0gβπ΅)) |
452 | 343, 451 | eqtrd 2773 |
. . . . . . . . . . . . 13
β’ (π β (π΅ Ξ£g (π β π β¦ (((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))))βπ)( Β·π
βπ΅)π))) = (0gβπ΅)) |
453 | | breq1 5152 |
. . . . . . . . . . . . . . . 16
β’ (π = (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) β (π finSupp
(0gβ(Scalarβπ΅)) β (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) finSupp
(0gβ(Scalarβπ΅)))) |
454 | | nfmpt1 5257 |
. . . . . . . . . . . . . . . . . . . 20
β’
β²π(π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) |
455 | 454 | nfeq2 2921 |
. . . . . . . . . . . . . . . . . . 19
β’
β²π π = (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) |
456 | | fveq1 6891 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π = (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) β (πβπ) = ((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))))βπ)) |
457 | 456 | oveq1d 7424 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π = (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) β ((πβπ)( Β·π
βπ΅)π) = (((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))))βπ)( Β·π
βπ΅)π)) |
458 | 457 | adantr 482 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π = (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) β§ π β π) β ((πβπ)( Β·π
βπ΅)π) = (((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))))βπ)( Β·π
βπ΅)π)) |
459 | 455, 458 | mpteq2da 5247 |
. . . . . . . . . . . . . . . . . 18
β’ (π = (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) β (π β π β¦ ((πβπ)( Β·π
βπ΅)π)) = (π β π β¦ (((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))))βπ)( Β·π
βπ΅)π))) |
460 | 459 | oveq2d 7425 |
. . . . . . . . . . . . . . . . 17
β’ (π = (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) β (π΅ Ξ£g (π β π β¦ ((πβπ)( Β·π
βπ΅)π))) = (π΅ Ξ£g (π β π β¦ (((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))))βπ)( Β·π
βπ΅)π)))) |
461 | 460 | eqeq1d 2735 |
. . . . . . . . . . . . . . . 16
β’ (π = (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) β ((π΅ Ξ£g (π β π β¦ ((πβπ)( Β·π
βπ΅)π))) = (0gβπ΅) β (π΅ Ξ£g (π β π β¦ (((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))))βπ)( Β·π
βπ΅)π))) = (0gβπ΅))) |
462 | 453, 461 | anbi12d 632 |
. . . . . . . . . . . . . . 15
β’ (π = (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) β ((π finSupp
(0gβ(Scalarβπ΅)) β§ (π΅ Ξ£g (π β π β¦ ((πβπ)( Β·π
βπ΅)π))) = (0gβπ΅)) β ((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) finSupp
(0gβ(Scalarβπ΅)) β§ (π΅ Ξ£g (π β π β¦ (((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))))βπ)( Β·π
βπ΅)π))) = (0gβπ΅)))) |
463 | | eqeq1 2737 |
. . . . . . . . . . . . . . 15
β’ (π = (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) β (π = (π Γ
{(0gβ(Scalarβπ΅))}) β (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) = (π Γ
{(0gβ(Scalarβπ΅))}))) |
464 | 462, 463 | imbi12d 345 |
. . . . . . . . . . . . . 14
β’ (π = (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) β (((π finSupp
(0gβ(Scalarβπ΅)) β§ (π΅ Ξ£g (π β π β¦ ((πβπ)( Β·π
βπ΅)π))) = (0gβπ΅)) β π = (π Γ
{(0gβ(Scalarβπ΅))})) β (((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) finSupp
(0gβ(Scalarβπ΅)) β§ (π΅ Ξ£g (π β π β¦ (((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))))βπ)( Β·π
βπ΅)π))) = (0gβπ΅)) β (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) = (π Γ
{(0gβ(Scalarβπ΅))})))) |
465 | 364 | lbslinds 21388 |
. . . . . . . . . . . . . . . 16
β’
(LBasisβπ΅)
β (LIndSβπ΅) |
466 | 465, 142 | sselid 3981 |
. . . . . . . . . . . . . . 15
β’ (π β π β (LIndSβπ΅)) |
467 | | eqid 2733 |
. . . . . . . . . . . . . . . . 17
β’
(Baseβ(Scalarβπ΅)) = (Baseβ(Scalarβπ΅)) |
468 | 233, 467,
319, 244, 204, 320 | islinds5 32480 |
. . . . . . . . . . . . . . . 16
β’ ((π΅ β LMod β§ π β (Baseβπ΅)) β (π β (LIndSβπ΅) β βπ β ((Baseβ(Scalarβπ΅)) βm π)((π finSupp
(0gβ(Scalarβπ΅)) β§ (π΅ Ξ£g (π β π β¦ ((πβπ)( Β·π
βπ΅)π))) = (0gβπ΅)) β π = (π Γ
{(0gβ(Scalarβπ΅))})))) |
469 | 468 | biimpa 478 |
. . . . . . . . . . . . . . 15
β’ (((π΅ β LMod β§ π β (Baseβπ΅)) β§ π β (LIndSβπ΅)) β βπ β ((Baseβ(Scalarβπ΅)) βm π)((π finSupp
(0gβ(Scalarβπ΅)) β§ (π΅ Ξ£g (π β π β¦ ((πβπ)( Β·π
βπ΅)π))) = (0gβπ΅)) β π = (π Γ
{(0gβ(Scalarβπ΅))}))) |
470 | 208, 366,
466, 469 | syl21anc 837 |
. . . . . . . . . . . . . 14
β’ (π β βπ β ((Baseβ(Scalarβπ΅)) βm π)((π finSupp
(0gβ(Scalarβπ΅)) β§ (π΅ Ξ£g (π β π β¦ ((πβπ)( Β·π
βπ΅)π))) = (0gβπ΅)) β π = (π Γ
{(0gβ(Scalarβπ΅))}))) |
471 | | fvexd 6907 |
. . . . . . . . . . . . . . 15
β’ (π β
(Baseβ(Scalarβπ΅)) β V) |
472 | | elmapg 8833 |
. . . . . . . . . . . . . . . 16
β’
(((Baseβ(Scalarβπ΅)) β V β§ π β (LBasisβπ΅)) β ((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) β ((Baseβ(Scalarβπ΅)) βm π) β (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))):πβΆ(Baseβ(Scalarβπ΅)))) |
473 | 472 | biimpar 479 |
. . . . . . . . . . . . . . 15
β’
((((Baseβ(Scalarβπ΅)) β V β§ π β (LBasisβπ΅)) β§ (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))):πβΆ(Baseβ(Scalarβπ΅))) β (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) β ((Baseβ(Scalarβπ΅)) βm π)) |
474 | 471, 142,
251, 473 | syl21anc 837 |
. . . . . . . . . . . . . 14
β’ (π β (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) β ((Baseβ(Scalarβπ΅)) βm π)) |
475 | 464, 470,
474 | rspcdva 3614 |
. . . . . . . . . . . . 13
β’ (π β (((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) finSupp
(0gβ(Scalarβπ΅)) β§ (π΅ Ξ£g (π β π β¦ (((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))))βπ)( Β·π
βπ΅)π))) = (0gβπ΅)) β (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) = (π Γ
{(0gβ(Scalarβπ΅))}))) |
476 | 337, 452,
475 | mp2and 698 |
. . . . . . . . . . . 12
β’ (π β (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) = (π Γ
{(0gβ(Scalarβπ΅))})) |
477 | | fconstmpt 5739 |
. . . . . . . . . . . 12
β’ (π Γ
{(0gβ(Scalarβπ΅))}) = (π β π β¦
(0gβ(Scalarβπ΅))) |
478 | 476, 477 | eqtrdi 2789 |
. . . . . . . . . . 11
β’ (π β (π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) = (π β π β¦
(0gβ(Scalarβπ΅)))) |
479 | | ovex 7442 |
. . . . . . . . . . . . 13
β’ (π΅ Ξ£g
(π β π β¦ ((πππ)( Β·π
βπ΅)π))) β V |
480 | 479 | rgenw 3066 |
. . . . . . . . . . . 12
β’
βπ β
π (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))) β V |
481 | | mpteqb 7018 |
. . . . . . . . . . . 12
β’
(βπ β
π (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))) β V β ((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) = (π β π β¦
(0gβ(Scalarβπ΅))) β βπ β π (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))) =
(0gβ(Scalarβπ΅)))) |
482 | 480, 481 | ax-mp 5 |
. . . . . . . . . . 11
β’ ((π β π β¦ (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π)))) = (π β π β¦
(0gβ(Scalarβπ΅))) β βπ β π (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))) =
(0gβ(Scalarβπ΅))) |
483 | 478, 482 | sylib 217 |
. . . . . . . . . 10
β’ (π β βπ β π (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))) =
(0gβ(Scalarβπ΅))) |
484 | 483 | r19.21bi 3249 |
. . . . . . . . 9
β’ ((π β§ π β π) β (π΅ Ξ£g (π β π β¦ ((πππ)( Β·π
βπ΅)π))) =
(0gβ(Scalarβπ΅))) |
485 | 312, 446,
313 | 3eqtr3rd 2782 |
. . . . . . . . . 10
β’ (π β
(0gβ(Scalarβπ΅)) = (0gβπ΄)) |
486 | 485 | adantr 482 |
. . . . . . . . 9
β’ ((π β§ π β π) β
(0gβ(Scalarβπ΅)) = (0gβπ΄)) |
487 | 202, 484,
486 | 3eqtrd 2777 |
. . . . . . . 8
β’ ((π β§ π β π) β (π΄ Ξ£g (π β π β¦ (((π β π β¦ (πππ))βπ)( Β·π
βπ΄)π))) = (0gβπ΄)) |
488 | 183, 487 | jca 513 |
. . . . . . 7
β’ ((π β§ π β π) β ((π β π β¦ (πππ)) finSupp
(0gβ(Scalarβπ΄)) β§ (π΄ Ξ£g (π β π β¦ (((π β π β¦ (πππ))βπ)( Β·π
βπ΄)π))) = (0gβπ΄))) |
489 | 186 | fmpttd 7115 |
. . . . . . . . 9
β’ ((π β§ π β π) β (π β π β¦ (πππ)):πβΆ(Baseβ(Scalarβπ΄))) |
490 | | fvexd 6907 |
. . . . . . . . . 10
β’ ((π β§ π β π) β (Baseβ(Scalarβπ΄)) β V) |
491 | 490, 144 | elmapd 8834 |
. . . . . . . . 9
β’ ((π β§ π β π) β ((π β π β¦ (πππ)) β ((Baseβ(Scalarβπ΄)) βm π) β (π β π β¦ (πππ)):πβΆ(Baseβ(Scalarβπ΄)))) |
492 | 489, 491 | mpbird 257 |
. . . . . . . 8
β’ ((π β§ π β π) β (π β π β¦ (πππ)) β ((Baseβ(Scalarβπ΄)) βm π)) |
493 | | simpr 486 |
. . . . . . . . . . 11
β’ (((π β§ π β π) β§ π€ = (π β π β¦ (πππ))) β π€ = (π β π β¦ (πππ))) |
494 | 493 | breq1d 5159 |
. . . . . . . . . 10
β’ (((π β§ π β π) β§ π€ = (π β π β¦ (πππ))) β (π€ finSupp
(0gβ(Scalarβπ΄)) β (π β π β¦ (πππ)) finSupp
(0gβ(Scalarβπ΄)))) |
495 | | nfv 1918 |
. . . . . . . . . . . . . 14
β’
β²π(π β§ π β π) |
496 | | nfmpt1 5257 |
. . . . . . . . . . . . . . 15
β’
β²π(π β π β¦ (πππ)) |
497 | 496 | nfeq2 2921 |
. . . . . . . . . . . . . 14
β’
β²π π€ = (π β π β¦ (πππ)) |
498 | 495, 497 | nfan 1903 |
. . . . . . . . . . . . 13
β’
β²π((π β§ π β π) β§ π€ = (π β π β¦ (πππ))) |
499 | | simplr 768 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β π) β§ π€ = (π β π β¦ (πππ))) β§ π β π) β π€ = (π β π β¦ (πππ))) |
500 | 499 | fveq1d 6894 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π) β§ π€ = (π β π β¦ (πππ))) β§ π β π) β (π€βπ) = ((π β π β¦ (πππ))βπ)) |
501 | 500 | oveq1d 7424 |
. . . . . . . . . . . . 13
β’ ((((π β§ π β π) β§ π€ = (π β π β¦ (πππ))) β§ π β π) β ((π€βπ)( Β·π
βπ΄)π) = (((π β π β¦ (πππ))βπ)( Β·π
βπ΄)π)) |
502 | 498, 501 | mpteq2da 5247 |
. . . . . . . . . . . 12
β’ (((π β§ π β π) β§ π€ = (π β π β¦ (πππ))) β (π β π β¦ ((π€βπ)( Β·π
βπ΄)π)) = (π β π β¦ (((π β π β¦ (πππ))βπ)( Β·π
βπ΄)π))) |
503 | 502 | oveq2d 7425 |
. . . . . . . . . . 11
β’ (((π β§ π β π) β§ π€ = (π β π β¦ (πππ))) β (π΄ Ξ£g (π β π β¦ ((π€βπ)( Β·π
βπ΄)π))) = (π΄ Ξ£g (π β π β¦ (((π β π β¦ (πππ))βπ)( Β·π
βπ΄)π)))) |
504 | 503 | eqeq1d 2735 |
. . . . . . . . . 10
β’ (((π β§ π β π) β§ π€ = (π β π β¦ (πππ))) β ((π΄ Ξ£g (π β π β¦ ((π€βπ)( Β·π
βπ΄)π))) = (0gβπ΄) β (π΄ Ξ£g (π β π β¦ (((π β π β¦ (πππ))βπ)( Β·π
βπ΄)π))) = (0gβπ΄))) |
505 | 494, 504 | anbi12d 632 |
. . . . . . . . 9
β’ (((π β§ π β π) β§ π€ = (π β π β¦ (πππ))) β ((π€ finSupp
(0gβ(Scalarβπ΄)) β§ (π΄ Ξ£g (π β π β¦ ((π€βπ)( Β·π
βπ΄)π))) = (0gβπ΄)) β ((π β π β¦ (πππ)) finSupp
(0gβ(Scalarβπ΄)) β§ (π΄ Ξ£g (π β π β¦ (((π β π β¦ (πππ))βπ)( Β·π
βπ΄)π))) = (0gβπ΄)))) |
506 | 493 | eqeq1d 2735 |
. . . . . . . . 9
β’ (((π β§ π β π) β§ π€ = (π β π β¦ (πππ))) β (π€ = (π Γ
{(0gβ(Scalarβπ΄))}) β (π β π β¦ (πππ)) = (π Γ
{(0gβ(Scalarβπ΄))}))) |
507 | 505, 506 | imbi12d 345 |
. . . . . . . 8
β’ (((π β§ π β π) β§ π€ = (π β π β¦ (πππ))) β (((π€ finSupp
(0gβ(Scalarβπ΄)) β§ (π΄ Ξ£g (π β π β¦ ((π€βπ)( Β·π
βπ΄)π))) = (0gβπ΄)) β π€ = (π Γ
{(0gβ(Scalarβπ΄))})) β (((π β π β¦ (πππ)) finSupp
(0gβ(Scalarβπ΄)) β§ (π΄ Ξ£g (π β π β¦ (((π β π β¦ (πππ))βπ)( Β·π
βπ΄)π))) = (0gβπ΄)) β (π β π β¦ (πππ)) = (π Γ
{(0gβ(Scalarβπ΄))})))) |
508 | 492, 507 | rspcdv 3605 |
. . . . . . 7
β’ ((π β§ π β π) β (βπ€ β ((Baseβ(Scalarβπ΄)) βm π)((π€ finSupp
(0gβ(Scalarβπ΄)) β§ (π΄ Ξ£g (π β π β¦ ((π€βπ)( Β·π
βπ΄)π))) = (0gβπ΄)) β π€ = (π Γ
{(0gβ(Scalarβπ΄))})) β (((π β π β¦ (πππ)) finSupp
(0gβ(Scalarβπ΄)) β§ (π΄ Ξ£g (π β π β¦ (((π β π β¦ (πππ))βπ)( Β·π
βπ΄)π))) = (0gβπ΄)) β (π β π β¦ (πππ)) = (π Γ
{(0gβ(Scalarβπ΄))})))) |
509 | 139, 488,
508 | mp2d 49 |
. . . . . 6
β’ ((π β§ π β π) β (π β π β¦ (πππ)) = (π Γ
{(0gβ(Scalarβπ΄))})) |
510 | 509, 254 | eqtrdi 2789 |
. . . . 5
β’ ((π β§ π β π) β (π β π β¦ (πππ)) = (π β π β¦
(0gβ(Scalarβπ΄)))) |
511 | 510, 308 | sylib 217 |
. . . 4
β’ ((π β§ π β π) β βπ β π (πππ) = (0gβ(Scalarβπ΄))) |
512 | 511 | ralrimiva 3147 |
. . 3
β’ (π β βπ β π βπ β π (πππ) = (0gβ(Scalarβπ΄))) |
513 | | eqidd 2734 |
. . . 4
β’ ((π = π β§ π = π) β
(0gβ(Scalarβπ΄)) =
(0gβ(Scalarβπ΄))) |
514 | | fvexd 6907 |
. . . 4
β’ ((π β§ π β π β§ π β π) β
(0gβ(Scalarβπ΄)) β V) |
515 | | fvexd 6907 |
. . . 4
β’ ((π β§ π β π β§ π β π) β
(0gβ(Scalarβπ΄)) β V) |
516 | 157, 513,
514, 515 | fnmpoovd 8073 |
. . 3
β’ (π β (π = (π β π, π β π β¦
(0gβ(Scalarβπ΄))) β βπ β π βπ β π (πππ) = (0gβ(Scalarβπ΄)))) |
517 | 512, 516 | mpbird 257 |
. 2
β’ (π β π = (π β π, π β π β¦
(0gβ(Scalarβπ΄)))) |
518 | | fconstmpo 7525 |
. 2
β’ ((π Γ π) Γ
{(0gβ(Scalarβπ΄))}) = (π β π, π β π β¦
(0gβ(Scalarβπ΄))) |
519 | 517, 518 | eqtr4di 2791 |
1
β’ (π β π = ((π Γ π) Γ
{(0gβ(Scalarβπ΄))})) |