Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fedgmullem2 Structured version   Visualization version   GIF version

Theorem fedgmullem2 33597
Description: Lemma for fedgmul 33598. (Contributed by Thierry Arnoux, 20-Jul-2023.)
Hypotheses
Ref Expression
fedgmul.a 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
fedgmul.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
fedgmul.c 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
fedgmul.f 𝐹 = (𝐸s 𝑈)
fedgmul.k 𝐾 = (𝐸s 𝑉)
fedgmul.1 (𝜑𝐸 ∈ DivRing)
fedgmul.2 (𝜑𝐹 ∈ DivRing)
fedgmul.3 (𝜑𝐾 ∈ DivRing)
fedgmul.4 (𝜑𝑈 ∈ (SubRing‘𝐸))
fedgmul.5 (𝜑𝑉 ∈ (SubRing‘𝐹))
fedgmullem.d 𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))
fedgmullem.h 𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
fedgmullem.x (𝜑𝑋 ∈ (LBasis‘𝐶))
fedgmullem.y (𝜑𝑌 ∈ (LBasis‘𝐵))
fedgmullem2.1 (𝜑𝑊 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑌 × 𝑋))))
fedgmullem2.2 (𝜑 → (𝐴 Σg (𝑊f ( ·𝑠𝐴)𝐷)) = (0g𝐴))
Assertion
Ref Expression
fedgmullem2 (𝜑𝑊 = ((𝑌 × 𝑋) × {(0g‘(Scalar‘𝐴))}))
Distinct variable groups:   𝐴,𝑖,𝑗   𝜑,𝑖,𝑗   𝑖,𝐸,𝑗   𝐷,𝑖,𝑗   𝐶,𝑖   𝑗,𝑊,𝑖   𝑖,𝑌,𝑗   𝑖,𝑋,𝑗   𝐵,𝑖,𝑗   𝑈,𝑖
Allowed substitution hints:   𝐶(𝑗)   𝑈(𝑗)   𝐹(𝑖,𝑗)   𝐺(𝑖,𝑗)   𝐻(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem fedgmullem2
Dummy variables 𝑏 𝑘 𝑙 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fedgmul.1 . . . . . . . . . . 11 (𝜑𝐸 ∈ DivRing)
2 fedgmul.3 . . . . . . . . . . 11 (𝜑𝐾 ∈ DivRing)
3 fedgmul.4 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (SubRing‘𝐸))
4 fedgmul.5 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ (SubRing‘𝐹))
5 fedgmul.f . . . . . . . . . . . . . . 15 𝐹 = (𝐸s 𝑈)
65subsubrg 20483 . . . . . . . . . . . . . 14 (𝑈 ∈ (SubRing‘𝐸) → (𝑉 ∈ (SubRing‘𝐹) ↔ (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈)))
76biimpa 476 . . . . . . . . . . . . 13 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉 ∈ (SubRing‘𝐹)) → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
83, 4, 7syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
98simpld 494 . . . . . . . . . . 11 (𝜑𝑉 ∈ (SubRing‘𝐸))
10 fedgmul.a . . . . . . . . . . . 12 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
11 fedgmul.k . . . . . . . . . . . 12 𝐾 = (𝐸s 𝑉)
1210, 11sralvec 33551 . . . . . . . . . . 11 ((𝐸 ∈ DivRing ∧ 𝐾 ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec)
131, 2, 9, 12syl3anc 1373 . . . . . . . . . 10 (𝜑𝐴 ∈ LVec)
14 lveclmod 21010 . . . . . . . . . 10 (𝐴 ∈ LVec → 𝐴 ∈ LMod)
1513, 14syl 17 . . . . . . . . 9 (𝜑𝐴 ∈ LMod)
16 fedgmullem.x . . . . . . . . . . 11 (𝜑𝑋 ∈ (LBasis‘𝐶))
17 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
18 eqid 2729 . . . . . . . . . . . 12 (LBasis‘𝐶) = (LBasis‘𝐶)
1917, 18lbsss 20981 . . . . . . . . . . 11 (𝑋 ∈ (LBasis‘𝐶) → 𝑋 ⊆ (Base‘𝐶))
2016, 19syl 17 . . . . . . . . . 10 (𝜑𝑋 ⊆ (Base‘𝐶))
21 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘𝐸) = (Base‘𝐸)
2221subrgss 20457 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
233, 22syl 17 . . . . . . . . . . . . . 14 (𝜑𝑈 ⊆ (Base‘𝐸))
245, 21ressbas2 17149 . . . . . . . . . . . . . 14 (𝑈 ⊆ (Base‘𝐸) → 𝑈 = (Base‘𝐹))
2523, 24syl 17 . . . . . . . . . . . . 13 (𝜑𝑈 = (Base‘𝐹))
26 fedgmul.c . . . . . . . . . . . . . . 15 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
2726a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐶 = ((subringAlg ‘𝐹)‘𝑉))
28 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘𝐹) = (Base‘𝐹)
2928subrgss 20457 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐹) → 𝑉 ⊆ (Base‘𝐹))
304, 29syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ⊆ (Base‘𝐹))
3127, 30srabase 21081 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐹) = (Base‘𝐶))
3225, 31eqtrd 2764 . . . . . . . . . . . 12 (𝜑𝑈 = (Base‘𝐶))
3332, 23eqsstrrd 3971 . . . . . . . . . . 11 (𝜑 → (Base‘𝐶) ⊆ (Base‘𝐸))
3410a1i 11 . . . . . . . . . . . 12 (𝜑𝐴 = ((subringAlg ‘𝐸)‘𝑉))
3521subrgss 20457 . . . . . . . . . . . . 13 (𝑉 ∈ (SubRing‘𝐸) → 𝑉 ⊆ (Base‘𝐸))
369, 35syl 17 . . . . . . . . . . . 12 (𝜑𝑉 ⊆ (Base‘𝐸))
3734, 36srabase 21081 . . . . . . . . . . 11 (𝜑 → (Base‘𝐸) = (Base‘𝐴))
3833, 37sseqtrd 3972 . . . . . . . . . 10 (𝜑 → (Base‘𝐶) ⊆ (Base‘𝐴))
3920, 38sstrd 3946 . . . . . . . . 9 (𝜑𝑋 ⊆ (Base‘𝐴))
4034, 3, 36srasubrg 33550 . . . . . . . . . . . 12 (𝜑𝑈 ∈ (SubRing‘𝐴))
41 subrgsubg 20462 . . . . . . . . . . . 12 (𝑈 ∈ (SubRing‘𝐴) → 𝑈 ∈ (SubGrp‘𝐴))
4240, 41syl 17 . . . . . . . . . . 11 (𝜑𝑈 ∈ (SubGrp‘𝐴))
4310, 1, 9drgextvsca 33557 . . . . . . . . . . . . . 14 (𝜑 → (.r𝐸) = ( ·𝑠𝐴))
4443oveqdr 7377 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → (𝑥(.r𝐸)𝑦) = (𝑥( ·𝑠𝐴)𝑦))
453adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → 𝑈 ∈ (SubRing‘𝐸))
468simprd 495 . . . . . . . . . . . . . . . 16 (𝜑𝑉𝑈)
4746adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → 𝑉𝑈)
48 simprl 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → 𝑥 ∈ (Base‘(Scalar‘𝐴)))
49 ressabs 17159 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈) → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
503, 46, 49syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
515oveq1i 7359 . . . . . . . . . . . . . . . . . . . . 21 (𝐹s 𝑉) = ((𝐸s 𝑈) ↾s 𝑉)
5250, 51, 113eqtr4g 2789 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹s 𝑉) = 𝐾)
5327, 30srasca 21084 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹s 𝑉) = (Scalar‘𝐶))
5452, 53eqtr3d 2766 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 = (Scalar‘𝐶))
5554fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝐶)))
5611, 21ressbas2 17149 . . . . . . . . . . . . . . . . . . 19 (𝑉 ⊆ (Base‘𝐸) → 𝑉 = (Base‘𝐾))
5736, 56syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑉 = (Base‘𝐾))
5834, 36srasca 21084 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸s 𝑉) = (Scalar‘𝐴))
5911, 58eqtrid 2776 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 = (Scalar‘𝐴))
6052, 53, 593eqtr3rd 2773 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐶))
6160fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
6255, 57, 613eqtr4d 2774 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 = (Base‘(Scalar‘𝐴)))
6362adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → 𝑉 = (Base‘(Scalar‘𝐴)))
6448, 63eleqtrrd 2831 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → 𝑥𝑉)
6547, 64sseldd 3936 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → 𝑥𝑈)
66 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → 𝑦𝑈)
67 eqid 2729 . . . . . . . . . . . . . . 15 (.r𝐸) = (.r𝐸)
6867subrgmcl 20469 . . . . . . . . . . . . . 14 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑥𝑈𝑦𝑈) → (𝑥(.r𝐸)𝑦) ∈ 𝑈)
6945, 65, 66, 68syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → (𝑥(.r𝐸)𝑦) ∈ 𝑈)
7044, 69eqeltrrd 2829 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → (𝑥( ·𝑠𝐴)𝑦) ∈ 𝑈)
7170ralrimivva 3172 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝐴))∀𝑦𝑈 (𝑥( ·𝑠𝐴)𝑦) ∈ 𝑈)
72 eqid 2729 . . . . . . . . . . . . 13 (Scalar‘𝐴) = (Scalar‘𝐴)
73 eqid 2729 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
74 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝐴) = (Base‘𝐴)
75 eqid 2729 . . . . . . . . . . . . 13 ( ·𝑠𝐴) = ( ·𝑠𝐴)
76 eqid 2729 . . . . . . . . . . . . 13 (LSubSp‘𝐴) = (LSubSp‘𝐴)
7772, 73, 74, 75, 76islss4 20865 . . . . . . . . . . . 12 (𝐴 ∈ LMod → (𝑈 ∈ (LSubSp‘𝐴) ↔ (𝑈 ∈ (SubGrp‘𝐴) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝐴))∀𝑦𝑈 (𝑥( ·𝑠𝐴)𝑦) ∈ 𝑈)))
7877biimpar 477 . . . . . . . . . . 11 ((𝐴 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝐴) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝐴))∀𝑦𝑈 (𝑥( ·𝑠𝐴)𝑦) ∈ 𝑈)) → 𝑈 ∈ (LSubSp‘𝐴))
7915, 42, 71, 78syl12anc 836 . . . . . . . . . 10 (𝜑𝑈 ∈ (LSubSp‘𝐴))
8020, 32sseqtrrd 3973 . . . . . . . . . 10 (𝜑𝑋𝑈)
8118lbslinds 21740 . . . . . . . . . . . 12 (LBasis‘𝐶) ⊆ (LIndS‘𝐶)
8281, 16sselid 3933 . . . . . . . . . . 11 (𝜑𝑋 ∈ (LIndS‘𝐶))
8323, 37sseqtrd 3972 . . . . . . . . . . . . . 14 (𝜑𝑈 ⊆ (Base‘𝐴))
84 eqid 2729 . . . . . . . . . . . . . . 15 (𝐴s 𝑈) = (𝐴s 𝑈)
8584, 74ressbas2 17149 . . . . . . . . . . . . . 14 (𝑈 ⊆ (Base‘𝐴) → 𝑈 = (Base‘(𝐴s 𝑈)))
8683, 85syl 17 . . . . . . . . . . . . 13 (𝜑𝑈 = (Base‘(𝐴s 𝑈)))
8725, 86, 313eqtr3rd 2773 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐶) = (Base‘(𝐴s 𝑈)))
8884, 72resssca 17247 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubRing‘𝐸) → (Scalar‘𝐴) = (Scalar‘(𝐴s 𝑈)))
893, 88syl 17 . . . . . . . . . . . . . 14 (𝜑 → (Scalar‘𝐴) = (Scalar‘(𝐴s 𝑈)))
9060, 89eqtr3d 2766 . . . . . . . . . . . . 13 (𝜑 → (Scalar‘𝐶) = (Scalar‘(𝐴s 𝑈)))
9190fveq2d 6826 . . . . . . . . . . . 12 (𝜑 → (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘(𝐴s 𝑈))))
9290fveq2d 6826 . . . . . . . . . . . 12 (𝜑 → (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘(𝐴s 𝑈))))
93 eqid 2729 . . . . . . . . . . . . . . . . 17 (+g𝐸) = (+g𝐸)
945, 93ressplusg 17195 . . . . . . . . . . . . . . . 16 (𝑈 ∈ (SubRing‘𝐸) → (+g𝐸) = (+g𝐹))
953, 94syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (+g𝐸) = (+g𝐹))
9634, 36sraaddg 21082 . . . . . . . . . . . . . . 15 (𝜑 → (+g𝐸) = (+g𝐴))
9727, 30sraaddg 21082 . . . . . . . . . . . . . . 15 (𝜑 → (+g𝐹) = (+g𝐶))
9895, 96, 973eqtr3rd 2773 . . . . . . . . . . . . . 14 (𝜑 → (+g𝐶) = (+g𝐴))
99 eqid 2729 . . . . . . . . . . . . . . . 16 (+g𝐴) = (+g𝐴)
10084, 99ressplusg 17195 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubRing‘𝐸) → (+g𝐴) = (+g‘(𝐴s 𝑈)))
1013, 100syl 17 . . . . . . . . . . . . . 14 (𝜑 → (+g𝐴) = (+g‘(𝐴s 𝑈)))
10298, 101eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → (+g𝐶) = (+g‘(𝐴s 𝑈)))
103102oveqdr 7377 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(+g𝐶)𝑦) = (𝑥(+g‘(𝐴s 𝑈))𝑦))
104 fedgmul.2 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ DivRing)
10552, 2eqeltrd 2828 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹s 𝑉) ∈ DivRing)
106 eqid 2729 . . . . . . . . . . . . . . . 16 (𝐹s 𝑉) = (𝐹s 𝑉)
10726, 106sralvec 33551 . . . . . . . . . . . . . . 15 ((𝐹 ∈ DivRing ∧ (𝐹s 𝑉) ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐹)) → 𝐶 ∈ LVec)
108104, 105, 4, 107syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ LVec)
109 lveclmod 21010 . . . . . . . . . . . . . 14 (𝐶 ∈ LVec → 𝐶 ∈ LMod)
110108, 109syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ LMod)
111 eqid 2729 . . . . . . . . . . . . . . 15 (Scalar‘𝐶) = (Scalar‘𝐶)
112 eqid 2729 . . . . . . . . . . . . . . 15 ( ·𝑠𝐶) = ( ·𝑠𝐶)
113 eqid 2729 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
11417, 111, 112, 113lmodvscl 20781 . . . . . . . . . . . . . 14 ((𝐶 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥( ·𝑠𝐶)𝑦) ∈ (Base‘𝐶))
1151143expb 1120 . . . . . . . . . . . . 13 ((𝐶 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥( ·𝑠𝐶)𝑦) ∈ (Base‘𝐶))
116110, 115sylan 580 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥( ·𝑠𝐶)𝑦) ∈ (Base‘𝐶))
117 fedgmul.b . . . . . . . . . . . . . . . 16 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
118117, 1, 3drgextvsca 33557 . . . . . . . . . . . . . . 15 (𝜑 → (.r𝐸) = ( ·𝑠𝐵))
11943, 118eqtr3d 2766 . . . . . . . . . . . . . 14 (𝜑 → ( ·𝑠𝐴) = ( ·𝑠𝐵))
12084, 75ressvsca 17248 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubRing‘𝐸) → ( ·𝑠𝐴) = ( ·𝑠 ‘(𝐴s 𝑈)))
1213, 120syl 17 . . . . . . . . . . . . . 14 (𝜑 → ( ·𝑠𝐴) = ( ·𝑠 ‘(𝐴s 𝑈)))
1225, 67ressmulr 17211 . . . . . . . . . . . . . . . 16 (𝑈 ∈ (SubRing‘𝐸) → (.r𝐸) = (.r𝐹))
1233, 122syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (.r𝐸) = (.r𝐹))
12426, 104, 4drgextvsca 33557 . . . . . . . . . . . . . . 15 (𝜑 → (.r𝐹) = ( ·𝑠𝐶))
125123, 118, 1243eqtr3d 2772 . . . . . . . . . . . . . 14 (𝜑 → ( ·𝑠𝐵) = ( ·𝑠𝐶))
126119, 121, 1253eqtr3rd 2773 . . . . . . . . . . . . 13 (𝜑 → ( ·𝑠𝐶) = ( ·𝑠 ‘(𝐴s 𝑈)))
127126oveqdr 7377 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥( ·𝑠𝐶)𝑦) = (𝑥( ·𝑠 ‘(𝐴s 𝑈))𝑦))
128 ovexd 7384 . . . . . . . . . . . 12 (𝜑 → (𝐴s 𝑈) ∈ V)
12987, 91, 92, 103, 116, 127, 108, 128lindspropd 33320 . . . . . . . . . . 11 (𝜑 → (LIndS‘𝐶) = (LIndS‘(𝐴s 𝑈)))
13082, 129eleqtrd 2830 . . . . . . . . . 10 (𝜑𝑋 ∈ (LIndS‘(𝐴s 𝑈)))
13176, 84lsslinds 21738 . . . . . . . . . . 11 ((𝐴 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝐴) ∧ 𝑋𝑈) → (𝑋 ∈ (LIndS‘(𝐴s 𝑈)) ↔ 𝑋 ∈ (LIndS‘𝐴)))
132131biimpa 476 . . . . . . . . . 10 (((𝐴 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝐴) ∧ 𝑋𝑈) ∧ 𝑋 ∈ (LIndS‘(𝐴s 𝑈))) → 𝑋 ∈ (LIndS‘𝐴))
13315, 79, 80, 130, 132syl31anc 1375 . . . . . . . . 9 (𝜑𝑋 ∈ (LIndS‘𝐴))
134 eqid 2729 . . . . . . . . . . 11 (0g𝐴) = (0g𝐴)
135 eqid 2729 . . . . . . . . . . 11 (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐴))
13674, 73, 72, 75, 134, 135islinds5 33304 . . . . . . . . . 10 ((𝐴 ∈ LMod ∧ 𝑋 ⊆ (Base‘𝐴)) → (𝑋 ∈ (LIndS‘𝐴) ↔ ∀𝑤 ∈ ((Base‘(Scalar‘𝐴)) ↑m 𝑋)((𝑤 finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) → 𝑤 = (𝑋 × {(0g‘(Scalar‘𝐴))}))))
137136biimpa 476 . . . . . . . . 9 (((𝐴 ∈ LMod ∧ 𝑋 ⊆ (Base‘𝐴)) ∧ 𝑋 ∈ (LIndS‘𝐴)) → ∀𝑤 ∈ ((Base‘(Scalar‘𝐴)) ↑m 𝑋)((𝑤 finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) → 𝑤 = (𝑋 × {(0g‘(Scalar‘𝐴))})))
13815, 39, 133, 137syl21anc 837 . . . . . . . 8 (𝜑 → ∀𝑤 ∈ ((Base‘(Scalar‘𝐴)) ↑m 𝑋)((𝑤 finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) → 𝑤 = (𝑋 × {(0g‘(Scalar‘𝐴))})))
139138adantr 480 . . . . . . 7 ((𝜑𝑗𝑌) → ∀𝑤 ∈ ((Base‘(Scalar‘𝐴)) ↑m 𝑋)((𝑤 finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) → 𝑤 = (𝑋 × {(0g‘(Scalar‘𝐴))})))
140 eqid 2729 . . . . . . . . . 10 (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑖𝑋 ↦ (𝑗𝑊𝑖))
141 fvexd 6837 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (0g𝐹) ∈ V)
142 fedgmullem.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (LBasis‘𝐵))
143142adantr 480 . . . . . . . . . 10 ((𝜑𝑗𝑌) → 𝑌 ∈ (LBasis‘𝐵))
14416adantr 480 . . . . . . . . . 10 ((𝜑𝑗𝑌) → 𝑋 ∈ (LBasis‘𝐶))
145 fedgmullem2.1 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑌 × 𝑋))))
146 fvexd 6837 . . . . . . . . . . . . . . . 16 (𝜑 → (Scalar‘𝐴) ∈ V)
147142, 16xpexd 7687 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 × 𝑋) ∈ V)
148 eqid 2729 . . . . . . . . . . . . . . . . 17 ((Scalar‘𝐴) freeLMod (𝑌 × 𝑋)) = ((Scalar‘𝐴) freeLMod (𝑌 × 𝑋))
149 eqid 2729 . . . . . . . . . . . . . . . . 17 (Base‘((Scalar‘𝐴) freeLMod (𝑌 × 𝑋))) = (Base‘((Scalar‘𝐴) freeLMod (𝑌 × 𝑋)))
150148, 73, 135, 149frlmelbas 21663 . . . . . . . . . . . . . . . 16 (((Scalar‘𝐴) ∈ V ∧ (𝑌 × 𝑋) ∈ V) → (𝑊 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑌 × 𝑋))) ↔ (𝑊 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ∧ 𝑊 finSupp (0g‘(Scalar‘𝐴)))))
151146, 147, 150syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑌 × 𝑋))) ↔ (𝑊 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ∧ 𝑊 finSupp (0g‘(Scalar‘𝐴)))))
152145, 151mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (𝑊 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ∧ 𝑊 finSupp (0g‘(Scalar‘𝐴))))
153152simpld 494 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)))
154 fvexd 6837 . . . . . . . . . . . . . 14 (𝜑 → (Base‘(Scalar‘𝐴)) ∈ V)
155154, 147elmapd 8767 . . . . . . . . . . . . 13 (𝜑 → (𝑊 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ↔ 𝑊:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴))))
156153, 155mpbid 232 . . . . . . . . . . . 12 (𝜑𝑊:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
157156ffnd 6653 . . . . . . . . . . 11 (𝜑𝑊 Fn (𝑌 × 𝑋))
158157adantr 480 . . . . . . . . . 10 ((𝜑𝑗𝑌) → 𝑊 Fn (𝑌 × 𝑋))
159 simpr 484 . . . . . . . . . 10 ((𝜑𝑗𝑌) → 𝑗𝑌)
160152simprd 495 . . . . . . . . . . . 12 (𝜑𝑊 finSupp (0g‘(Scalar‘𝐴)))
161 drngring 20621 . . . . . . . . . . . . . . . 16 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
1621, 161syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ Ring)
163 ringmnd 20128 . . . . . . . . . . . . . . 15 (𝐸 ∈ Ring → 𝐸 ∈ Mnd)
164162, 163syl 17 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ Mnd)
165 subrgsubg 20462 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ (SubRing‘𝐸) → 𝑉 ∈ (SubGrp‘𝐸))
1669, 165syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑉 ∈ (SubGrp‘𝐸))
167 eqid 2729 . . . . . . . . . . . . . . . . 17 (0g𝐸) = (0g𝐸)
168167subg0cl 19013 . . . . . . . . . . . . . . . 16 (𝑉 ∈ (SubGrp‘𝐸) → (0g𝐸) ∈ 𝑉)
169166, 168syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (0g𝐸) ∈ 𝑉)
17046, 169sseldd 3936 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐸) ∈ 𝑈)
1715, 21, 167ress0g 18636 . . . . . . . . . . . . . 14 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ 𝑈𝑈 ⊆ (Base‘𝐸)) → (0g𝐸) = (0g𝐹))
172164, 170, 23, 171syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (0g𝐸) = (0g𝐹))
17354fveq2d 6826 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐾) = (0g‘(Scalar‘𝐶)))
17411, 167subrg0 20464 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐸) → (0g𝐸) = (0g𝐾))
1759, 174syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐸) = (0g𝐾))
17660fveq2d 6826 . . . . . . . . . . . . . 14 (𝜑 → (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐶)))
177173, 175, 1763eqtr4d 2774 . . . . . . . . . . . . 13 (𝜑 → (0g𝐸) = (0g‘(Scalar‘𝐴)))
178172, 177eqtr3d 2766 . . . . . . . . . . . 12 (𝜑 → (0g𝐹) = (0g‘(Scalar‘𝐴)))
179160, 178breqtrrd 5120 . . . . . . . . . . 11 (𝜑𝑊 finSupp (0g𝐹))
180179adantr 480 . . . . . . . . . 10 ((𝜑𝑗𝑌) → 𝑊 finSupp (0g𝐹))
181140, 141, 143, 144, 158, 159, 180fsuppcurry1 32668 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) finSupp (0g𝐹))
182178adantr 480 . . . . . . . . 9 ((𝜑𝑗𝑌) → (0g𝐹) = (0g‘(Scalar‘𝐴)))
183181, 182breqtrd 5118 . . . . . . . 8 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) finSupp (0g‘(Scalar‘𝐴)))
184 eqidd 2730 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑖𝑋 ↦ (𝑗𝑊𝑖)))
185156fovcdmda 7520 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → (𝑗𝑊𝑖) ∈ (Base‘(Scalar‘𝐴)))
186185anassrs 467 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗𝑊𝑖) ∈ (Base‘(Scalar‘𝐴)))
187184, 186fvmpt2d 6943 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖) = (𝑗𝑊𝑖))
188187oveq1d 7364 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖) = ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖))
189119ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ( ·𝑠𝐴) = ( ·𝑠𝐵))
190189oveqd 7366 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖) = ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))
191188, 190eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖) = ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))
192191mpteq2dva 5185 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖)) = (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))
193192oveq2d 7365 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))) = (𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
1941adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝐸 ∈ DivRing)
1959adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑉 ∈ (SubRing‘𝐸))
1962adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝐾 ∈ DivRing)
19710, 194, 195, 11, 196, 144drgextgsum 33561 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
1983adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑈 ∈ (SubRing‘𝐸))
199104adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝐹 ∈ DivRing)
200117, 194, 198, 5, 199, 144drgextgsum 33561 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
201197, 200eqtr3d 2766 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
202193, 201eqtrd 2764 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))) = (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
203142mptexd 7160 . . . . . . . . . . . . . 14 (𝜑 → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) ∈ V)
204 eqid 2729 . . . . . . . . . . . . . . . . . 18 (0g𝐵) = (0g𝐵)
205117, 5sralvec 33551 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐵 ∈ LVec)
2061, 104, 3, 205syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ LVec)
207 lveclmod 21010 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ LVec → 𝐵 ∈ LMod)
208206, 207syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵 ∈ LMod)
209208adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑌) → 𝐵 ∈ LMod)
210 lmodabl 20812 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ LMod → 𝐵 ∈ Abel)
211209, 210syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑌) → 𝐵 ∈ Abel)
212117a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
213212, 3, 23srasubrg 33550 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑈 ∈ (SubRing‘𝐵))
214 subrgsubg 20462 . . . . . . . . . . . . . . . . . . . 20 (𝑈 ∈ (SubRing‘𝐵) → 𝑈 ∈ (SubGrp‘𝐵))
215213, 214syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈 ∈ (SubGrp‘𝐵))
216215adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑌) → 𝑈 ∈ (SubGrp‘𝐵))
217110ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝐶 ∈ LMod)
21861ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
219186, 218eleqtrd 2830 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗𝑊𝑖) ∈ (Base‘(Scalar‘𝐶)))
22020ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑋 ⊆ (Base‘𝐶))
221 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖𝑋)
222220, 221sseldd 3936 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐶))
22317, 111, 112, 113lmodvscl 20781 . . . . . . . . . . . . . . . . . . . . 21 ((𝐶 ∈ LMod ∧ (𝑗𝑊𝑖) ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑖 ∈ (Base‘𝐶)) → ((𝑗𝑊𝑖)( ·𝑠𝐶)𝑖) ∈ (Base‘𝐶))
224217, 219, 222, 223syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝑗𝑊𝑖)( ·𝑠𝐶)𝑖) ∈ (Base‘𝐶))
225125oveqd 7366 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖) = ((𝑗𝑊𝑖)( ·𝑠𝐶)𝑖))
226225ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖) = ((𝑗𝑊𝑖)( ·𝑠𝐶)𝑖))
22732ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑈 = (Base‘𝐶))
228224, 226, 2273eltr4d 2843 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖) ∈ 𝑈)
229228fmpttd 7049 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)):𝑋𝑈)
230212, 23srasca 21084 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
2315, 230eqtrid 2776 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹 = (Scalar‘𝐵))
232231adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑌) → 𝐹 = (Scalar‘𝐵))
233 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (Base‘𝐵) = (Base‘𝐵)
234 ovexd 7384 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗𝑊𝑖) ∈ V)
23520, 33sstrd 3946 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋 ⊆ (Base‘𝐸))
236235adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → 𝑋 ⊆ (Base‘𝐸))
237 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → 𝑖𝑋)
238236, 237sseldd 3936 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → 𝑖 ∈ (Base‘𝐸))
239238anassrs 467 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐸))
240212, 23srabase 21081 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (Base‘𝐸) = (Base‘𝐵))
241240ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (Base‘𝐸) = (Base‘𝐵))
242239, 241eleqtrd 2830 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐵))
243 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (0g𝐹) = (0g𝐹)
244 eqid 2729 . . . . . . . . . . . . . . . . . . 19 ( ·𝑠𝐵) = ( ·𝑠𝐵)
245144, 209, 232, 233, 234, 242, 204, 243, 244, 181mptscmfsupp0 20830 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)) finSupp (0g𝐵))
246204, 211, 144, 216, 229, 245gsumsubgcl 19799 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑌) → (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) ∈ 𝑈)
247231fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐵)))
24825, 247eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 = (Base‘(Scalar‘𝐵)))
249248adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑌) → 𝑈 = (Base‘(Scalar‘𝐵)))
250246, 249eleqtrd 2830 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑌) → (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) ∈ (Base‘(Scalar‘𝐵)))
251250fmpttd 7049 . . . . . . . . . . . . . . 15 (𝜑 → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))):𝑌⟶(Base‘(Scalar‘𝐵)))
252251ffund 6656 . . . . . . . . . . . . . 14 (𝜑 → Fun (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))))
253 fvexd 6837 . . . . . . . . . . . . . 14 (𝜑 → (0g‘(Scalar‘𝐵)) ∈ V)
254 fconstmpt 5681 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 × {(0g‘(Scalar‘𝐴))}) = (𝑖𝑋 ↦ (0g‘(Scalar‘𝐴)))
255254eqeq2i 2742 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑋 ↦ (𝑘𝑊𝑖)) = (𝑋 × {(0g‘(Scalar‘𝐴))}) ↔ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) = (𝑖𝑋 ↦ (0g‘(Scalar‘𝐴))))
256 ovex 7382 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝑊𝑖) ∈ V
257256rgenw 3048 . . . . . . . . . . . . . . . . . . . . 21 𝑖𝑋 (𝑘𝑊𝑖) ∈ V
258 mpteqb 6949 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑖𝑋 (𝑘𝑊𝑖) ∈ V → ((𝑖𝑋 ↦ (𝑘𝑊𝑖)) = (𝑖𝑋 ↦ (0g‘(Scalar‘𝐴))) ↔ ∀𝑖𝑋 (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴))))
259257, 258ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑋 ↦ (𝑘𝑊𝑖)) = (𝑖𝑋 ↦ (0g‘(Scalar‘𝐴))) ↔ ∀𝑖𝑋 (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴)))
260255, 259bitri 275 . . . . . . . . . . . . . . . . . . 19 ((𝑖𝑋 ↦ (𝑘𝑊𝑖)) = (𝑋 × {(0g‘(Scalar‘𝐴))}) ↔ ∀𝑖𝑋 (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴)))
261260necon3abii 2971 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))}) ↔ ¬ ∀𝑖𝑋 (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴)))
262 df-ov 7352 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘𝑊𝑖) = (𝑊‘⟨𝑘, 𝑖⟩)
263262eqcomi 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑊‘⟨𝑘, 𝑖⟩) = (𝑘𝑊𝑖)
264263a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘𝑌) ∧ 𝑖𝑋) → (𝑊‘⟨𝑘, 𝑖⟩) = (𝑘𝑊𝑖))
265264eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝑌) ∧ 𝑖𝑋) → ((𝑊‘⟨𝑘, 𝑖⟩) = (0g‘(Scalar‘𝐴)) ↔ (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴))))
266265necon3abid 2961 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘𝑌) ∧ 𝑖𝑋) → ((𝑊‘⟨𝑘, 𝑖⟩) ≠ (0g‘(Scalar‘𝐴)) ↔ ¬ (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴))))
267266rexbidva 3151 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑌) → (∃𝑖𝑋 (𝑊‘⟨𝑘, 𝑖⟩) ≠ (0g‘(Scalar‘𝐴)) ↔ ∃𝑖𝑋 ¬ (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴))))
268 rexnal 3081 . . . . . . . . . . . . . . . . . . 19 (∃𝑖𝑋 ¬ (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴)) ↔ ¬ ∀𝑖𝑋 (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴)))
269267, 268bitr2di 288 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑌) → (¬ ∀𝑖𝑋 (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴)) ↔ ∃𝑖𝑋 (𝑊‘⟨𝑘, 𝑖⟩) ≠ (0g‘(Scalar‘𝐴))))
270261, 269bitrid 283 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑌) → ((𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))}) ↔ ∃𝑖𝑋 (𝑊‘⟨𝑘, 𝑖⟩) ≠ (0g‘(Scalar‘𝐴))))
271270rabbidva 3401 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})} = {𝑘𝑌 ∣ ∃𝑖𝑋 (𝑊‘⟨𝑘, 𝑖⟩) ≠ (0g‘(Scalar‘𝐴))})
272 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑘, 𝑖⟩ → (𝑊𝑧) = (𝑊‘⟨𝑘, 𝑖⟩))
273272neeq1d 2984 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨𝑘, 𝑖⟩ → ((𝑊𝑧) ≠ (0g‘(Scalar‘𝐴)) ↔ (𝑊‘⟨𝑘, 𝑖⟩) ≠ (0g‘(Scalar‘𝐴))))
274273dmrab 32441 . . . . . . . . . . . . . . . 16 dom {𝑧 ∈ (𝑌 × 𝑋) ∣ (𝑊𝑧) ≠ (0g‘(Scalar‘𝐴))} = {𝑘𝑌 ∣ ∃𝑖𝑋 (𝑊‘⟨𝑘, 𝑖⟩) ≠ (0g‘(Scalar‘𝐴))}
275271, 274eqtr4di 2782 . . . . . . . . . . . . . . 15 (𝜑 → {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})} = dom {𝑧 ∈ (𝑌 × 𝑋) ∣ (𝑊𝑧) ≠ (0g‘(Scalar‘𝐴))})
276 fvexd 6837 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g‘(Scalar‘𝐴)) ∈ V)
277 suppvalfn 8101 . . . . . . . . . . . . . . . . . 18 ((𝑊 Fn (𝑌 × 𝑋) ∧ (𝑌 × 𝑋) ∈ V ∧ (0g‘(Scalar‘𝐴)) ∈ V) → (𝑊 supp (0g‘(Scalar‘𝐴))) = {𝑧 ∈ (𝑌 × 𝑋) ∣ (𝑊𝑧) ≠ (0g‘(Scalar‘𝐴))})
278157, 147, 276, 277syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑊 supp (0g‘(Scalar‘𝐴))) = {𝑧 ∈ (𝑌 × 𝑋) ∣ (𝑊𝑧) ≠ (0g‘(Scalar‘𝐴))})
279160fsuppimpd 9259 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑊 supp (0g‘(Scalar‘𝐴))) ∈ Fin)
280278, 279eqeltrrd 2829 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑧 ∈ (𝑌 × 𝑋) ∣ (𝑊𝑧) ≠ (0g‘(Scalar‘𝐴))} ∈ Fin)
281 dmfi 9225 . . . . . . . . . . . . . . . 16 ({𝑧 ∈ (𝑌 × 𝑋) ∣ (𝑊𝑧) ≠ (0g‘(Scalar‘𝐴))} ∈ Fin → dom {𝑧 ∈ (𝑌 × 𝑋) ∣ (𝑊𝑧) ≠ (0g‘(Scalar‘𝐴))} ∈ Fin)
282280, 281syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom {𝑧 ∈ (𝑌 × 𝑋) ∣ (𝑊𝑧) ≠ (0g‘(Scalar‘𝐴))} ∈ Fin)
283275, 282eqeltrd 2828 . . . . . . . . . . . . . 14 (𝜑 → {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})} ∈ Fin)
284 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑖𝜑
285 nfcv 2891 . . . . . . . . . . . . . . . . . . . . 21 𝑖𝑌
286 nfmpt1 5191 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖(𝑖𝑋 ↦ (𝑘𝑊𝑖))
287 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖(𝑋 × {(0g‘(Scalar‘𝐴))})
288286, 287nfne 3026 . . . . . . . . . . . . . . . . . . . . . 22 𝑖(𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})
289288, 285nfrabw 3432 . . . . . . . . . . . . . . . . . . . . 21 𝑖{𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})}
290285, 289nfdif 4080 . . . . . . . . . . . . . . . . . . . 20 𝑖(𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})
291290nfcri 2883 . . . . . . . . . . . . . . . . . . 19 𝑖 𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})
292284, 291nfan 1899 . . . . . . . . . . . . . . . . . 18 𝑖(𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})}))
293 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → 𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})}))
294293eldifad 3915 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → 𝑗𝑌)
295293eldifbd 3916 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → ¬ 𝑗 ∈ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})
296 oveq1 7356 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = 𝑗 → (𝑘𝑊𝑖) = (𝑗𝑊𝑖))
297296mpteq2dv 5186 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 = 𝑗 → (𝑖𝑋 ↦ (𝑘𝑊𝑖)) = (𝑖𝑋 ↦ (𝑗𝑊𝑖)))
298297neeq1d 2984 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 = 𝑗 → ((𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))}) ↔ (𝑖𝑋 ↦ (𝑗𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})))
299298elrab 3648 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 ∈ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})} ↔ (𝑗𝑌 ∧ (𝑖𝑋 ↦ (𝑗𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})))
300295, 299sylnib 328 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → ¬ (𝑗𝑌 ∧ (𝑖𝑋 ↦ (𝑗𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})))
301294, 300mpnanrd 409 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → ¬ (𝑖𝑋 ↦ (𝑗𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))}))
302 nne 2929 . . . . . . . . . . . . . . . . . . . . . . . 24 (¬ (𝑖𝑋 ↦ (𝑗𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))}) ↔ (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑋 × {(0g‘(Scalar‘𝐴))}))
303301, 302sylib 218 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑋 × {(0g‘(Scalar‘𝐴))}))
304303, 254eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑖𝑋 ↦ (0g‘(Scalar‘𝐴))))
305 ovex 7382 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗𝑊𝑖) ∈ V
306305rgenw 3048 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖𝑋 (𝑗𝑊𝑖) ∈ V
307 mpteqb 6949 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑖𝑋 (𝑗𝑊𝑖) ∈ V → ((𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑖𝑋 ↦ (0g‘(Scalar‘𝐴))) ↔ ∀𝑖𝑋 (𝑗𝑊𝑖) = (0g‘(Scalar‘𝐴))))
308306, 307ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑖𝑋 ↦ (0g‘(Scalar‘𝐴))) ↔ ∀𝑖𝑋 (𝑗𝑊𝑖) = (0g‘(Scalar‘𝐴)))
309304, 308sylib 218 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → ∀𝑖𝑋 (𝑗𝑊𝑖) = (0g‘(Scalar‘𝐴)))
310309r19.21bi 3221 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) ∧ 𝑖𝑋) → (𝑗𝑊𝑖) = (0g‘(Scalar‘𝐴)))
311310oveq1d 7364 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) ∧ 𝑖𝑋) → ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖) = ((0g‘(Scalar‘𝐴))( ·𝑠𝐵)𝑖))
312117, 1, 3drgext0g 33556 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0g𝐸) = (0g𝐵))
313117, 1, 3drgext0gsca 33558 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0g𝐵) = (0g‘(Scalar‘𝐵)))
314312, 177, 3133eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐵)))
315314ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) ∧ 𝑖𝑋) → (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐵)))
316315oveq1d 7364 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) ∧ 𝑖𝑋) → ((0g‘(Scalar‘𝐴))( ·𝑠𝐵)𝑖) = ((0g‘(Scalar‘𝐵))( ·𝑠𝐵)𝑖))
317208ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) ∧ 𝑖𝑋) → 𝐵 ∈ LMod)
318294, 242syldanl 602 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐵))
319 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (Scalar‘𝐵) = (Scalar‘𝐵)
320 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (0g‘(Scalar‘𝐵)) = (0g‘(Scalar‘𝐵))
321233, 319, 244, 320, 204lmod0vs 20798 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ LMod ∧ 𝑖 ∈ (Base‘𝐵)) → ((0g‘(Scalar‘𝐵))( ·𝑠𝐵)𝑖) = (0g𝐵))
322317, 318, 321syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) ∧ 𝑖𝑋) → ((0g‘(Scalar‘𝐵))( ·𝑠𝐵)𝑖) = (0g𝐵))
323311, 316, 3223eqtrd 2768 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) ∧ 𝑖𝑋) → ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖) = (0g𝐵))
324292, 323mpteq2da 5184 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)) = (𝑖𝑋 ↦ (0g𝐵)))
325324oveq2d 7365 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (𝐵 Σg (𝑖𝑋 ↦ (0g𝐵))))
326 ablgrp 19664 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ Abel → 𝐵 ∈ Grp)
327 grpmnd 18819 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ Grp → 𝐵 ∈ Mnd)
328208, 210, 326, 3274syl 19 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ Mnd)
329204gsumz 18710 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ Mnd ∧ 𝑋 ∈ (LBasis‘𝐶)) → (𝐵 Σg (𝑖𝑋 ↦ (0g𝐵))) = (0g𝐵))
330328, 16, 329syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 Σg (𝑖𝑋 ↦ (0g𝐵))) = (0g𝐵))
331330adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → (𝐵 Σg (𝑖𝑋 ↦ (0g𝐵))) = (0g𝐵))
332313adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → (0g𝐵) = (0g‘(Scalar‘𝐵)))
333325, 331, 3323eqtrd 2768 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (0g‘(Scalar‘𝐵)))
334333, 142suppss2 8133 . . . . . . . . . . . . . 14 (𝜑 → ((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) supp (0g‘(Scalar‘𝐵))) ⊆ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})
335 suppssfifsupp 9270 . . . . . . . . . . . . . 14 ((((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) ∈ V ∧ Fun (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) ∧ (0g‘(Scalar‘𝐵)) ∈ V) ∧ ({𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})} ∈ Fin ∧ ((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) supp (0g‘(Scalar‘𝐵))) ⊆ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) finSupp (0g‘(Scalar‘𝐵)))
336203, 252, 253, 283, 334, 335syl32anc 1380 . . . . . . . . . . . . 13 (𝜑 → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) finSupp (0g‘(Scalar‘𝐵)))
337 eqidd 2730 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))))
338 ovexd 7384 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑌) → (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) ∈ V)
339337, 338fvmpt2d 6943 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑌) → ((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗) = (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
340339oveq1d 7364 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑌) → (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗) = ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))
341340mpteq2dva 5185 . . . . . . . . . . . . . . 15 (𝜑 → (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗)) = (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗)))
342341oveq2d 7365 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 Σg (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))) = (𝐵 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))))
343119adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑌) → ( ·𝑠𝐴) = ( ·𝑠𝐵))
34443ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (.r𝐸) = ( ·𝑠𝐴))
345344oveqd 7366 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝑗𝑊𝑖)(.r𝐸)𝑖) = ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖))
346345mpteq2dva 5185 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)) = (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))
347118adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗𝑌) → (.r𝐸) = ( ·𝑠𝐵))
348347oveqd 7366 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑌) → ((𝑗𝑊𝑖)(.r𝐸)𝑖) = ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))
349348mpteq2dv 5186 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)) = (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))
350346, 349eqtr3d 2766 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)) = (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))
351350oveq2d 7365 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑌) → (𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖))) = (𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
352 eqidd 2730 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑌) → 𝑗 = 𝑗)
353343, 351, 352oveq123d 7370 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑌) → ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗) = ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))
354201oveq1d 7364 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑌) → ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗) = ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))
355353, 354eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑌) → ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗) = ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))
356355mpteq2dva 5185 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑗𝑌 ↦ ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗)) = (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗)))
357356oveq2d 7365 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 Σg (𝑗𝑌 ↦ ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗))) = (𝐴 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))))
35810, 21sraring 21090 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 ∈ Ring ∧ 𝑉 ⊆ (Base‘𝐸)) → 𝐴 ∈ Ring)
359162, 36, 358syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ Ring)
360 ringcmn 20167 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ Ring → 𝐴 ∈ CMnd)
361359, 360syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ CMnd)
362162adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → 𝐸 ∈ Ring)
363 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (LBasis‘𝐵) = (LBasis‘𝐵)
364233, 363lbsss 20981 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑌 ∈ (LBasis‘𝐵) → 𝑌 ⊆ (Base‘𝐵))
365142, 364syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑌 ⊆ (Base‘𝐵))
366365, 240sseqtrrd 3973 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑌 ⊆ (Base‘𝐸))
367366adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → 𝑌 ⊆ (Base‘𝐸))
368 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → 𝑗𝑌)
369367, 368sseldd 3936 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → 𝑗 ∈ (Base‘𝐸))
37021, 67ringcl 20135 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐸 ∈ Ring ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
371362, 238, 369, 370syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
37237adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → (Base‘𝐸) = (Base‘𝐴))
373371, 372eleqtrd 2830 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
374373ralrimivva 3172 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑗𝑌𝑖𝑋 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
375 fedgmullem.d . . . . . . . . . . . . . . . . . . . . 21 𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))
376375fmpo 8003 . . . . . . . . . . . . . . . . . . . 20 (∀𝑗𝑌𝑖𝑋 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴) ↔ 𝐷:(𝑌 × 𝑋)⟶(Base‘𝐴))
377374, 376sylib 218 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷:(𝑌 × 𝑋)⟶(Base‘𝐴))
37872, 73, 75, 74, 15, 156, 377, 147lcomf 20804 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑊f ( ·𝑠𝐴)𝐷):(𝑌 × 𝑋)⟶(Base‘𝐴))
37972, 73, 75, 74, 15, 156, 377, 147, 134, 135, 160lcomfsupp 20805 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑊f ( ·𝑠𝐴)𝐷) finSupp (0g𝐴))
38074, 134, 361, 142, 16, 378, 379gsumxp 19855 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 Σg (𝑊f ( ·𝑠𝐴)𝐷)) = (𝐴 Σg (𝑗𝑌 ↦ (𝐴 Σg (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖))))))
381 fedgmullem2.2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 Σg (𝑊f ( ·𝑠𝐴)𝐷)) = (0g𝐴))
3821623ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗𝑌𝑖𝑋) → 𝐸 ∈ Ring)
3831563ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑗𝑌𝑖𝑋) → 𝑊:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
38457, 55eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑉 = (Base‘(Scalar‘𝐶)))
385384, 36eqsstrrd 3971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
38661, 385eqsstrd 3970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐸))
387386, 37sseqtrd 3972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐴))
3883873ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑗𝑌𝑖𝑋) → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐴))
389383, 388fssd 6669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑗𝑌𝑖𝑋) → 𝑊:(𝑌 × 𝑋)⟶(Base‘𝐴))
390 simp2 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑗𝑌𝑖𝑋) → 𝑗𝑌)
391 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑗𝑌𝑖𝑋) → 𝑖𝑋)
392389, 390, 391fovcdmd 7521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑗𝑌𝑖𝑋) → (𝑗𝑊𝑖) ∈ (Base‘𝐴))
393373ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑗𝑌𝑖𝑋) → (Base‘𝐸) = (Base‘𝐴))
394392, 393eleqtrrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗𝑌𝑖𝑋) → (𝑗𝑊𝑖) ∈ (Base‘𝐸))
3952383impb 1114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗𝑌𝑖𝑋) → 𝑖 ∈ (Base‘𝐸))
3963693impb 1114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗𝑌𝑖𝑋) → 𝑗 ∈ (Base‘𝐸))
39721, 67ringass 20138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐸 ∈ Ring ∧ ((𝑗𝑊𝑖) ∈ (Base‘𝐸) ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸))) → (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) = ((𝑗𝑊𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
398382, 394, 395, 396, 397syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗𝑌𝑖𝑋) → (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) = ((𝑗𝑊𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
399398mpoeq3dva 7426 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑗𝑌, 𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗)) = (𝑗𝑌, 𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))))
400 ovexd 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗𝑌𝑖𝑋) → (𝑗𝑊𝑖) ∈ V)
401 ovexd 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗𝑌𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ V)
402 fnov 7480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑊 Fn (𝑌 × 𝑋) ↔ 𝑊 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑗𝑊𝑖)))
403157, 402sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑊 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑗𝑊𝑖)))
404375a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗)))
405142, 16, 400, 401, 403, 404offval22 8021 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑊f (.r𝐸)𝐷) = (𝑗𝑌, 𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))))
40643ofeqd 7615 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ∘f (.r𝐸) = ∘f ( ·𝑠𝐴))
407406oveqd 7366 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑊f (.r𝐸)𝐷) = (𝑊f ( ·𝑠𝐴)𝐷))
408399, 405, 4073eqtr2rd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑊f ( ·𝑠𝐴)𝐷) = (𝑗𝑌, 𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗)))
409408ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑊f ( ·𝑠𝐴)𝐷) = (𝑗𝑌, 𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗)))
410409oveqd 7366 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖) = (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))𝑖))
411 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑗𝑌)
412 ovexd 7384 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) ∈ V)
413 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗𝑌, 𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗)) = (𝑗𝑌, 𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))
414413ovmpt4g 7496 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗𝑌𝑖𝑋 ∧ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) ∈ V) → (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))𝑖) = (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))
415411, 221, 412, 414syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))𝑖) = (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))
416410, 415eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖) = (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))
417416mpteq2dva 5185 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖)) = (𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗)))
418417oveq2d 7365 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖))) = (𝐸 Σg (𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))))
419162adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑌) → 𝐸 ∈ Ring)
420366sselda 3935 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑌) → 𝑗 ∈ (Base‘𝐸))
421162ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝐸 ∈ Ring)
422385ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
423422, 219sseldd 3936 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗𝑊𝑖) ∈ (Base‘𝐸))
42421, 67ringcl 20135 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐸 ∈ Ring ∧ (𝑗𝑊𝑖) ∈ (Base‘𝐸) ∧ 𝑖 ∈ (Base‘𝐸)) → ((𝑗𝑊𝑖)(.r𝐸)𝑖) ∈ (Base‘𝐸))
425421, 423, 239, 424syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝑗𝑊𝑖)(.r𝐸)𝑖) ∈ (Base‘𝐸))
426312adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗𝑌) → (0g𝐸) = (0g𝐵))
427245, 349, 4263brtr4d 5124 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)) finSupp (0g𝐸))
42821, 167, 67, 419, 144, 420, 425, 427gsummulc1 20201 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))) = ((𝐸 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗))
429418, 428eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖))) = ((𝐸 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗))
430144mptexd 7160 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖)) ∈ V)
43115adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → 𝐴 ∈ LMod)
43236adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → 𝑉 ⊆ (Base‘𝐸))
43310, 430, 194, 431, 432gsumsra 33000 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖))) = (𝐴 Σg (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖))))
434144mptexd 7160 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)) ∈ V)
43510, 434, 194, 431, 432gsumsra 33000 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖))) = (𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖))))
436435oveq1d 7364 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → ((𝐸 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗) = ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗))
43743adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑌) → (.r𝐸) = ( ·𝑠𝐴))
438346oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑌) → (𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖))) = (𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖))))
439437, 438, 352oveq123d 7370 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗) = ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗))
440436, 439eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑌) → ((𝐸 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗) = ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗))
441429, 433, 4403eqtr3d 2772 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑌) → (𝐴 Σg (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖))) = ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗))
442441mpteq2dva 5185 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑗𝑌 ↦ (𝐴 Σg (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖)))) = (𝑗𝑌 ↦ ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗)))
443442oveq2d 7365 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 Σg (𝑗𝑌 ↦ (𝐴 Σg (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖))))) = (𝐴 Σg (𝑗𝑌 ↦ ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗))))
444380, 381, 4433eqtr3rd 2773 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 Σg (𝑗𝑌 ↦ ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗))) = (0g𝐴))
44510, 1, 9drgext0g 33556 . . . . . . . . . . . . . . . 16 (𝜑 → (0g𝐸) = (0g𝐴))
446444, 445, 3123eqtr2d 2770 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 Σg (𝑗𝑌 ↦ ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗))) = (0g𝐵))
44710, 1, 9, 11, 2, 142drgextgsum 33561 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))) = (𝐴 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))))
448117, 1, 3, 5, 104, 142drgextgsum 33561 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))) = (𝐵 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))))
449447, 448eqtr3d 2766 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))) = (𝐵 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))))
450357, 446, 4493eqtr3rd 2773 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))) = (0g𝐵))
451342, 450eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → (𝐵 Σg (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵))
452 breq1 5095 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → (𝑏 finSupp (0g‘(Scalar‘𝐵)) ↔ (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) finSupp (0g‘(Scalar‘𝐵))))
453 nfmpt1 5191 . . . . . . . . . . . . . . . . . . . 20 𝑗(𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
454453nfeq2 2909 . . . . . . . . . . . . . . . . . . 19 𝑗 𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
455 fveq1 6821 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → (𝑏𝑗) = ((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗))
456455oveq1d 7364 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → ((𝑏𝑗)( ·𝑠𝐵)𝑗) = (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))
457456adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) ∧ 𝑗𝑌) → ((𝑏𝑗)( ·𝑠𝐵)𝑗) = (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))
458454, 457mpteq2da 5184 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → (𝑗𝑌 ↦ ((𝑏𝑗)( ·𝑠𝐵)𝑗)) = (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗)))
459458oveq2d 7365 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → (𝐵 Σg (𝑗𝑌 ↦ ((𝑏𝑗)( ·𝑠𝐵)𝑗))) = (𝐵 Σg (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))))
460459eqeq1d 2731 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → ((𝐵 Σg (𝑗𝑌 ↦ ((𝑏𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵) ↔ (𝐵 Σg (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵)))
461452, 460anbi12d 632 . . . . . . . . . . . . . . 15 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → ((𝑏 finSupp (0g‘(Scalar‘𝐵)) ∧ (𝐵 Σg (𝑗𝑌 ↦ ((𝑏𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵)) ↔ ((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) finSupp (0g‘(Scalar‘𝐵)) ∧ (𝐵 Σg (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵))))
462 eqeq1 2733 . . . . . . . . . . . . . . 15 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → (𝑏 = (𝑌 × {(0g‘(Scalar‘𝐵))}) ↔ (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) = (𝑌 × {(0g‘(Scalar‘𝐵))})))
463461, 462imbi12d 344 . . . . . . . . . . . . . 14 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → (((𝑏 finSupp (0g‘(Scalar‘𝐵)) ∧ (𝐵 Σg (𝑗𝑌 ↦ ((𝑏𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵)) → 𝑏 = (𝑌 × {(0g‘(Scalar‘𝐵))})) ↔ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) finSupp (0g‘(Scalar‘𝐵)) ∧ (𝐵 Σg (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵)) → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) = (𝑌 × {(0g‘(Scalar‘𝐵))}))))
464363lbslinds 21740 . . . . . . . . . . . . . . . 16 (LBasis‘𝐵) ⊆ (LIndS‘𝐵)
465464, 142sselid 3933 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (LIndS‘𝐵))
466 eqid 2729 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝐵)) = (Base‘(Scalar‘𝐵))
467233, 466, 319, 244, 204, 320islinds5 33304 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ LMod ∧ 𝑌 ⊆ (Base‘𝐵)) → (𝑌 ∈ (LIndS‘𝐵) ↔ ∀𝑏 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑌)((𝑏 finSupp (0g‘(Scalar‘𝐵)) ∧ (𝐵 Σg (𝑗𝑌 ↦ ((𝑏𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵)) → 𝑏 = (𝑌 × {(0g‘(Scalar‘𝐵))}))))
468467biimpa 476 . . . . . . . . . . . . . . 15 (((𝐵 ∈ LMod ∧ 𝑌 ⊆ (Base‘𝐵)) ∧ 𝑌 ∈ (LIndS‘𝐵)) → ∀𝑏 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑌)((𝑏 finSupp (0g‘(Scalar‘𝐵)) ∧ (𝐵 Σg (𝑗𝑌 ↦ ((𝑏𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵)) → 𝑏 = (𝑌 × {(0g‘(Scalar‘𝐵))})))
469208, 365, 465, 468syl21anc 837 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑏 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑌)((𝑏 finSupp (0g‘(Scalar‘𝐵)) ∧ (𝐵 Σg (𝑗𝑌 ↦ ((𝑏𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵)) → 𝑏 = (𝑌 × {(0g‘(Scalar‘𝐵))})))
470 fvexd 6837 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘(Scalar‘𝐵)) ∈ V)
471 elmapg 8766 . . . . . . . . . . . . . . . 16 (((Base‘(Scalar‘𝐵)) ∈ V ∧ 𝑌 ∈ (LBasis‘𝐵)) → ((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑌) ↔ (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))):𝑌⟶(Base‘(Scalar‘𝐵))))
472471biimpar 477 . . . . . . . . . . . . . . 15 ((((Base‘(Scalar‘𝐵)) ∈ V ∧ 𝑌 ∈ (LBasis‘𝐵)) ∧ (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))):𝑌⟶(Base‘(Scalar‘𝐵))) → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑌))
473470, 142, 251, 472syl21anc 837 . . . . . . . . . . . . . 14 (𝜑 → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑌))
474463, 469, 473rspcdva 3578 . . . . . . . . . . . . 13 (𝜑 → (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) finSupp (0g‘(Scalar‘𝐵)) ∧ (𝐵 Σg (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵)) → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) = (𝑌 × {(0g‘(Scalar‘𝐵))})))
475336, 451, 474mp2and 699 . . . . . . . . . . . 12 (𝜑 → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) = (𝑌 × {(0g‘(Scalar‘𝐵))}))
476 fconstmpt 5681 . . . . . . . . . . . 12 (𝑌 × {(0g‘(Scalar‘𝐵))}) = (𝑗𝑌 ↦ (0g‘(Scalar‘𝐵)))
477475, 476eqtrdi 2780 . . . . . . . . . . 11 (𝜑 → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) = (𝑗𝑌 ↦ (0g‘(Scalar‘𝐵))))
478 ovex 7382 . . . . . . . . . . . . 13 (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) ∈ V
479478rgenw 3048 . . . . . . . . . . . 12 𝑗𝑌 (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) ∈ V
480 mpteqb 6949 . . . . . . . . . . . 12 (∀𝑗𝑌 (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) ∈ V → ((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) = (𝑗𝑌 ↦ (0g‘(Scalar‘𝐵))) ↔ ∀𝑗𝑌 (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (0g‘(Scalar‘𝐵))))
481479, 480ax-mp 5 . . . . . . . . . . 11 ((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) = (𝑗𝑌 ↦ (0g‘(Scalar‘𝐵))) ↔ ∀𝑗𝑌 (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (0g‘(Scalar‘𝐵)))
482477, 481sylib 218 . . . . . . . . . 10 (𝜑 → ∀𝑗𝑌 (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (0g‘(Scalar‘𝐵)))
483482r19.21bi 3221 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (0g‘(Scalar‘𝐵)))
484312, 445, 3133eqtr3rd 2773 . . . . . . . . . 10 (𝜑 → (0g‘(Scalar‘𝐵)) = (0g𝐴))
485484adantr 480 . . . . . . . . 9 ((𝜑𝑗𝑌) → (0g‘(Scalar‘𝐵)) = (0g𝐴))
486202, 483, 4853eqtrd 2768 . . . . . . . 8 ((𝜑𝑗𝑌) → (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴))
487183, 486jca 511 . . . . . . 7 ((𝜑𝑗𝑌) → ((𝑖𝑋 ↦ (𝑗𝑊𝑖)) finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)))
488186fmpttd 7049 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)):𝑋⟶(Base‘(Scalar‘𝐴)))
489 fvexd 6837 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (Base‘(Scalar‘𝐴)) ∈ V)
490489, 144elmapd 8767 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝑖𝑋 ↦ (𝑗𝑊𝑖)) ∈ ((Base‘(Scalar‘𝐴)) ↑m 𝑋) ↔ (𝑖𝑋 ↦ (𝑗𝑊𝑖)):𝑋⟶(Base‘(Scalar‘𝐴))))
491488, 490mpbird 257 . . . . . . . 8 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) ∈ ((Base‘(Scalar‘𝐴)) ↑m 𝑋))
492 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) → 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖)))
493492breq1d 5102 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) → (𝑤 finSupp (0g‘(Scalar‘𝐴)) ↔ (𝑖𝑋 ↦ (𝑗𝑊𝑖)) finSupp (0g‘(Scalar‘𝐴))))
494 nfv 1914 . . . . . . . . . . . . . 14 𝑖(𝜑𝑗𝑌)
495 nfmpt1 5191 . . . . . . . . . . . . . . 15 𝑖(𝑖𝑋 ↦ (𝑗𝑊𝑖))
496495nfeq2 2909 . . . . . . . . . . . . . 14 𝑖 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))
497494, 496nfan 1899 . . . . . . . . . . . . 13 𝑖((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖)))
498 simplr 768 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) ∧ 𝑖𝑋) → 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖)))
499498fveq1d 6824 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) ∧ 𝑖𝑋) → (𝑤𝑖) = ((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖))
500499oveq1d 7364 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) ∧ 𝑖𝑋) → ((𝑤𝑖)( ·𝑠𝐴)𝑖) = (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))
501497, 500mpteq2da 5184 . . . . . . . . . . . 12 (((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) → (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖)) = (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖)))
502501oveq2d 7365 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) → (𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))))
503502eqeq1d 2731 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) → ((𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴) ↔ (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)))
504493, 503anbi12d 632 . . . . . . . . 9 (((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) → ((𝑤 finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) ↔ ((𝑖𝑋 ↦ (𝑗𝑊𝑖)) finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴))))
505492eqeq1d 2731 . . . . . . . . 9 (((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) → (𝑤 = (𝑋 × {(0g‘(Scalar‘𝐴))}) ↔ (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑋 × {(0g‘(Scalar‘𝐴))})))
506504, 505imbi12d 344 . . . . . . . 8 (((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) → (((𝑤 finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) → 𝑤 = (𝑋 × {(0g‘(Scalar‘𝐴))})) ↔ (((𝑖𝑋 ↦ (𝑗𝑊𝑖)) finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑋 × {(0g‘(Scalar‘𝐴))}))))
507491, 506rspcdv 3569 . . . . . . 7 ((𝜑𝑗𝑌) → (∀𝑤 ∈ ((Base‘(Scalar‘𝐴)) ↑m 𝑋)((𝑤 finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) → 𝑤 = (𝑋 × {(0g‘(Scalar‘𝐴))})) → (((𝑖𝑋 ↦ (𝑗𝑊𝑖)) finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑋 × {(0g‘(Scalar‘𝐴))}))))
508139, 487, 507mp2d 49 . . . . . 6 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑋 × {(0g‘(Scalar‘𝐴))}))
509508, 254eqtrdi 2780 . . . . 5 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑖𝑋 ↦ (0g‘(Scalar‘𝐴))))
510509, 308sylib 218 . . . 4 ((𝜑𝑗𝑌) → ∀𝑖𝑋 (𝑗𝑊𝑖) = (0g‘(Scalar‘𝐴)))
511510ralrimiva 3121 . . 3 (𝜑 → ∀𝑗𝑌𝑖𝑋 (𝑗𝑊𝑖) = (0g‘(Scalar‘𝐴)))
512 eqidd 2730 . . . 4 ((𝑗 = 𝑘𝑖 = 𝑙) → (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐴)))
513 fvexd 6837 . . . 4 ((𝜑𝑗𝑌𝑖𝑋) → (0g‘(Scalar‘𝐴)) ∈ V)
514 fvexd 6837 . . . 4 ((𝜑𝑘𝑌𝑙𝑋) → (0g‘(Scalar‘𝐴)) ∈ V)
515157, 512, 513, 514fnmpoovd 8020 . . 3 (𝜑 → (𝑊 = (𝑘𝑌, 𝑙𝑋 ↦ (0g‘(Scalar‘𝐴))) ↔ ∀𝑗𝑌𝑖𝑋 (𝑗𝑊𝑖) = (0g‘(Scalar‘𝐴))))
516511, 515mpbird 257 . 2 (𝜑𝑊 = (𝑘𝑌, 𝑙𝑋 ↦ (0g‘(Scalar‘𝐴))))
517 fconstmpo 7466 . 2 ((𝑌 × 𝑋) × {(0g‘(Scalar‘𝐴))}) = (𝑘𝑌, 𝑙𝑋 ↦ (0g‘(Scalar‘𝐴)))
518516, 517eqtr4di 2782 1 (𝜑𝑊 = ((𝑌 × 𝑋) × {(0g‘(Scalar‘𝐴))}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  wss 3903  {csn 4577  cop 4583   class class class wbr 5092  cmpt 5173   × cxp 5617  dom cdm 5619  Fun wfun 6476   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  f cof 7611   supp csupp 8093  m cmap 8753  Fincfn 8872   finSupp cfsupp 9251  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608  Grpcgrp 18812  SubGrpcsubg 18999  CMndccmn 19659  Abelcabl 19660  Ringcrg 20118  SubRingcsubrg 20454  DivRingcdr 20614  LModclmod 20763  LSubSpclss 20834  LBasisclbs 20978  LVecclvec 21006  subringAlg csra 21075   freeLMod cfrlm 21653  LIndSclinds 21712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lmhm 20926  df-lbs 20979  df-lvec 21007  df-sra 21077  df-rgmod 21078  df-dsmm 21639  df-frlm 21654  df-uvc 21690  df-lindf 21713  df-linds 21714
This theorem is referenced by:  fedgmul  33598
  Copyright terms: Public domain W3C validator