Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fedgmullem2 Structured version   Visualization version   GIF version

Theorem fedgmullem2 31114
Description: Lemma for fedgmul 31115. (Contributed by Thierry Arnoux, 20-Jul-2023.)
Hypotheses
Ref Expression
fedgmul.a 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
fedgmul.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
fedgmul.c 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
fedgmul.f 𝐹 = (𝐸s 𝑈)
fedgmul.k 𝐾 = (𝐸s 𝑉)
fedgmul.1 (𝜑𝐸 ∈ DivRing)
fedgmul.2 (𝜑𝐹 ∈ DivRing)
fedgmul.3 (𝜑𝐾 ∈ DivRing)
fedgmul.4 (𝜑𝑈 ∈ (SubRing‘𝐸))
fedgmul.5 (𝜑𝑉 ∈ (SubRing‘𝐹))
fedgmullem.d 𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))
fedgmullem.h 𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
fedgmullem.x (𝜑𝑋 ∈ (LBasis‘𝐶))
fedgmullem.y (𝜑𝑌 ∈ (LBasis‘𝐵))
fedgmullem2.1 (𝜑𝑊 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑌 × 𝑋))))
fedgmullem2.2 (𝜑 → (𝐴 Σg (𝑊f ( ·𝑠𝐴)𝐷)) = (0g𝐴))
Assertion
Ref Expression
fedgmullem2 (𝜑𝑊 = ((𝑌 × 𝑋) × {(0g‘(Scalar‘𝐴))}))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖   𝐷,𝑖,𝑗   𝑖,𝐸,𝑗   𝑈,𝑖   𝑖,𝑊,𝑗   𝑖,𝑋,𝑗   𝑖,𝑌,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝑈(𝑗)   𝐹(𝑖,𝑗)   𝐺(𝑖,𝑗)   𝐻(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem fedgmullem2
Dummy variables 𝑏 𝑤 𝑘 𝑥 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fedgmul.1 . . . . . . . . . . 11 (𝜑𝐸 ∈ DivRing)
2 fedgmul.3 . . . . . . . . . . 11 (𝜑𝐾 ∈ DivRing)
3 fedgmul.4 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (SubRing‘𝐸))
4 fedgmul.5 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ (SubRing‘𝐹))
5 fedgmul.f . . . . . . . . . . . . . . 15 𝐹 = (𝐸s 𝑈)
65subsubrg 19554 . . . . . . . . . . . . . 14 (𝑈 ∈ (SubRing‘𝐸) → (𝑉 ∈ (SubRing‘𝐹) ↔ (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈)))
76biimpa 480 . . . . . . . . . . . . 13 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉 ∈ (SubRing‘𝐹)) → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
83, 4, 7syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
98simpld 498 . . . . . . . . . . 11 (𝜑𝑉 ∈ (SubRing‘𝐸))
10 fedgmul.a . . . . . . . . . . . 12 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
11 fedgmul.k . . . . . . . . . . . 12 𝐾 = (𝐸s 𝑉)
1210, 11sralvec 31078 . . . . . . . . . . 11 ((𝐸 ∈ DivRing ∧ 𝐾 ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec)
131, 2, 9, 12syl3anc 1368 . . . . . . . . . 10 (𝜑𝐴 ∈ LVec)
14 lveclmod 19871 . . . . . . . . . 10 (𝐴 ∈ LVec → 𝐴 ∈ LMod)
1513, 14syl 17 . . . . . . . . 9 (𝜑𝐴 ∈ LMod)
16 fedgmullem.x . . . . . . . . . . 11 (𝜑𝑋 ∈ (LBasis‘𝐶))
17 eqid 2798 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
18 eqid 2798 . . . . . . . . . . . 12 (LBasis‘𝐶) = (LBasis‘𝐶)
1917, 18lbsss 19842 . . . . . . . . . . 11 (𝑋 ∈ (LBasis‘𝐶) → 𝑋 ⊆ (Base‘𝐶))
2016, 19syl 17 . . . . . . . . . 10 (𝜑𝑋 ⊆ (Base‘𝐶))
21 eqid 2798 . . . . . . . . . . . . . . . 16 (Base‘𝐸) = (Base‘𝐸)
2221subrgss 19529 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
233, 22syl 17 . . . . . . . . . . . . . 14 (𝜑𝑈 ⊆ (Base‘𝐸))
245, 21ressbas2 16547 . . . . . . . . . . . . . 14 (𝑈 ⊆ (Base‘𝐸) → 𝑈 = (Base‘𝐹))
2523, 24syl 17 . . . . . . . . . . . . 13 (𝜑𝑈 = (Base‘𝐹))
26 fedgmul.c . . . . . . . . . . . . . . 15 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
2726a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐶 = ((subringAlg ‘𝐹)‘𝑉))
28 eqid 2798 . . . . . . . . . . . . . . . 16 (Base‘𝐹) = (Base‘𝐹)
2928subrgss 19529 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐹) → 𝑉 ⊆ (Base‘𝐹))
304, 29syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ⊆ (Base‘𝐹))
3127, 30srabase 19943 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐹) = (Base‘𝐶))
3225, 31eqtrd 2833 . . . . . . . . . . . 12 (𝜑𝑈 = (Base‘𝐶))
3332, 23eqsstrrd 3954 . . . . . . . . . . 11 (𝜑 → (Base‘𝐶) ⊆ (Base‘𝐸))
3410a1i 11 . . . . . . . . . . . 12 (𝜑𝐴 = ((subringAlg ‘𝐸)‘𝑉))
3521subrgss 19529 . . . . . . . . . . . . 13 (𝑉 ∈ (SubRing‘𝐸) → 𝑉 ⊆ (Base‘𝐸))
369, 35syl 17 . . . . . . . . . . . 12 (𝜑𝑉 ⊆ (Base‘𝐸))
3734, 36srabase 19943 . . . . . . . . . . 11 (𝜑 → (Base‘𝐸) = (Base‘𝐴))
3833, 37sseqtrd 3955 . . . . . . . . . 10 (𝜑 → (Base‘𝐶) ⊆ (Base‘𝐴))
3920, 38sstrd 3925 . . . . . . . . 9 (𝜑𝑋 ⊆ (Base‘𝐴))
4034, 3, 36srasubrg 31077 . . . . . . . . . . . 12 (𝜑𝑈 ∈ (SubRing‘𝐴))
41 subrgsubg 19534 . . . . . . . . . . . 12 (𝑈 ∈ (SubRing‘𝐴) → 𝑈 ∈ (SubGrp‘𝐴))
4240, 41syl 17 . . . . . . . . . . 11 (𝜑𝑈 ∈ (SubGrp‘𝐴))
4310, 1, 9drgextvsca 31081 . . . . . . . . . . . . . 14 (𝜑 → (.r𝐸) = ( ·𝑠𝐴))
4443oveqdr 7163 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → (𝑥(.r𝐸)𝑦) = (𝑥( ·𝑠𝐴)𝑦))
453adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → 𝑈 ∈ (SubRing‘𝐸))
468simprd 499 . . . . . . . . . . . . . . . 16 (𝜑𝑉𝑈)
4746adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → 𝑉𝑈)
48 simprl 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → 𝑥 ∈ (Base‘(Scalar‘𝐴)))
49 ressabs 16555 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈) → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
503, 46, 49syl2anc 587 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
515oveq1i 7145 . . . . . . . . . . . . . . . . . . . . 21 (𝐹s 𝑉) = ((𝐸s 𝑈) ↾s 𝑉)
5250, 51, 113eqtr4g 2858 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹s 𝑉) = 𝐾)
5327, 30srasca 19946 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹s 𝑉) = (Scalar‘𝐶))
5452, 53eqtr3d 2835 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 = (Scalar‘𝐶))
5554fveq2d 6649 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝐶)))
5611, 21ressbas2 16547 . . . . . . . . . . . . . . . . . . 19 (𝑉 ⊆ (Base‘𝐸) → 𝑉 = (Base‘𝐾))
5736, 56syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑉 = (Base‘𝐾))
5834, 36srasca 19946 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸s 𝑉) = (Scalar‘𝐴))
5911, 58syl5eq 2845 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 = (Scalar‘𝐴))
6052, 53, 593eqtr3rd 2842 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐶))
6160fveq2d 6649 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
6255, 57, 613eqtr4d 2843 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 = (Base‘(Scalar‘𝐴)))
6362adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → 𝑉 = (Base‘(Scalar‘𝐴)))
6448, 63eleqtrrd 2893 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → 𝑥𝑉)
6547, 64sseldd 3916 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → 𝑥𝑈)
66 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → 𝑦𝑈)
67 eqid 2798 . . . . . . . . . . . . . . 15 (.r𝐸) = (.r𝐸)
6867subrgmcl 19540 . . . . . . . . . . . . . 14 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑥𝑈𝑦𝑈) → (𝑥(.r𝐸)𝑦) ∈ 𝑈)
6945, 65, 66, 68syl3anc 1368 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → (𝑥(.r𝐸)𝑦) ∈ 𝑈)
7044, 69eqeltrrd 2891 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦𝑈)) → (𝑥( ·𝑠𝐴)𝑦) ∈ 𝑈)
7170ralrimivva 3156 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝐴))∀𝑦𝑈 (𝑥( ·𝑠𝐴)𝑦) ∈ 𝑈)
72 eqid 2798 . . . . . . . . . . . . 13 (Scalar‘𝐴) = (Scalar‘𝐴)
73 eqid 2798 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
74 eqid 2798 . . . . . . . . . . . . 13 (Base‘𝐴) = (Base‘𝐴)
75 eqid 2798 . . . . . . . . . . . . 13 ( ·𝑠𝐴) = ( ·𝑠𝐴)
76 eqid 2798 . . . . . . . . . . . . 13 (LSubSp‘𝐴) = (LSubSp‘𝐴)
7772, 73, 74, 75, 76islss4 19727 . . . . . . . . . . . 12 (𝐴 ∈ LMod → (𝑈 ∈ (LSubSp‘𝐴) ↔ (𝑈 ∈ (SubGrp‘𝐴) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝐴))∀𝑦𝑈 (𝑥( ·𝑠𝐴)𝑦) ∈ 𝑈)))
7877biimpar 481 . . . . . . . . . . 11 ((𝐴 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝐴) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝐴))∀𝑦𝑈 (𝑥( ·𝑠𝐴)𝑦) ∈ 𝑈)) → 𝑈 ∈ (LSubSp‘𝐴))
7915, 42, 71, 78syl12anc 835 . . . . . . . . . 10 (𝜑𝑈 ∈ (LSubSp‘𝐴))
8020, 32sseqtrrd 3956 . . . . . . . . . 10 (𝜑𝑋𝑈)
8118lbslinds 20522 . . . . . . . . . . . 12 (LBasis‘𝐶) ⊆ (LIndS‘𝐶)
8281, 16sseldi 3913 . . . . . . . . . . 11 (𝜑𝑋 ∈ (LIndS‘𝐶))
8323, 37sseqtrd 3955 . . . . . . . . . . . . . 14 (𝜑𝑈 ⊆ (Base‘𝐴))
84 eqid 2798 . . . . . . . . . . . . . . 15 (𝐴s 𝑈) = (𝐴s 𝑈)
8584, 74ressbas2 16547 . . . . . . . . . . . . . 14 (𝑈 ⊆ (Base‘𝐴) → 𝑈 = (Base‘(𝐴s 𝑈)))
8683, 85syl 17 . . . . . . . . . . . . 13 (𝜑𝑈 = (Base‘(𝐴s 𝑈)))
8725, 86, 313eqtr3rd 2842 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐶) = (Base‘(𝐴s 𝑈)))
8884, 72resssca 16642 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubRing‘𝐸) → (Scalar‘𝐴) = (Scalar‘(𝐴s 𝑈)))
893, 88syl 17 . . . . . . . . . . . . . 14 (𝜑 → (Scalar‘𝐴) = (Scalar‘(𝐴s 𝑈)))
9060, 89eqtr3d 2835 . . . . . . . . . . . . 13 (𝜑 → (Scalar‘𝐶) = (Scalar‘(𝐴s 𝑈)))
9190fveq2d 6649 . . . . . . . . . . . 12 (𝜑 → (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘(𝐴s 𝑈))))
9290fveq2d 6649 . . . . . . . . . . . 12 (𝜑 → (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘(𝐴s 𝑈))))
93 eqid 2798 . . . . . . . . . . . . . . . . 17 (+g𝐸) = (+g𝐸)
945, 93ressplusg 16604 . . . . . . . . . . . . . . . 16 (𝑈 ∈ (SubRing‘𝐸) → (+g𝐸) = (+g𝐹))
953, 94syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (+g𝐸) = (+g𝐹))
9634, 36sraaddg 19944 . . . . . . . . . . . . . . 15 (𝜑 → (+g𝐸) = (+g𝐴))
9727, 30sraaddg 19944 . . . . . . . . . . . . . . 15 (𝜑 → (+g𝐹) = (+g𝐶))
9895, 96, 973eqtr3rd 2842 . . . . . . . . . . . . . 14 (𝜑 → (+g𝐶) = (+g𝐴))
99 eqid 2798 . . . . . . . . . . . . . . . 16 (+g𝐴) = (+g𝐴)
10084, 99ressplusg 16604 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubRing‘𝐸) → (+g𝐴) = (+g‘(𝐴s 𝑈)))
1013, 100syl 17 . . . . . . . . . . . . . 14 (𝜑 → (+g𝐴) = (+g‘(𝐴s 𝑈)))
10298, 101eqtrd 2833 . . . . . . . . . . . . 13 (𝜑 → (+g𝐶) = (+g‘(𝐴s 𝑈)))
103102oveqdr 7163 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(+g𝐶)𝑦) = (𝑥(+g‘(𝐴s 𝑈))𝑦))
104 fedgmul.2 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ DivRing)
10552, 2eqeltrd 2890 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹s 𝑉) ∈ DivRing)
106 eqid 2798 . . . . . . . . . . . . . . . 16 (𝐹s 𝑉) = (𝐹s 𝑉)
10726, 106sralvec 31078 . . . . . . . . . . . . . . 15 ((𝐹 ∈ DivRing ∧ (𝐹s 𝑉) ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐹)) → 𝐶 ∈ LVec)
108104, 105, 4, 107syl3anc 1368 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ LVec)
109 lveclmod 19871 . . . . . . . . . . . . . 14 (𝐶 ∈ LVec → 𝐶 ∈ LMod)
110108, 109syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ LMod)
111 eqid 2798 . . . . . . . . . . . . . . 15 (Scalar‘𝐶) = (Scalar‘𝐶)
112 eqid 2798 . . . . . . . . . . . . . . 15 ( ·𝑠𝐶) = ( ·𝑠𝐶)
113 eqid 2798 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
11417, 111, 112, 113lmodvscl 19644 . . . . . . . . . . . . . 14 ((𝐶 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥( ·𝑠𝐶)𝑦) ∈ (Base‘𝐶))
1151143expb 1117 . . . . . . . . . . . . 13 ((𝐶 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥( ·𝑠𝐶)𝑦) ∈ (Base‘𝐶))
116110, 115sylan 583 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥( ·𝑠𝐶)𝑦) ∈ (Base‘𝐶))
117 fedgmul.b . . . . . . . . . . . . . . . 16 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
118117, 1, 3drgextvsca 31081 . . . . . . . . . . . . . . 15 (𝜑 → (.r𝐸) = ( ·𝑠𝐵))
11943, 118eqtr3d 2835 . . . . . . . . . . . . . 14 (𝜑 → ( ·𝑠𝐴) = ( ·𝑠𝐵))
12084, 75ressvsca 16643 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubRing‘𝐸) → ( ·𝑠𝐴) = ( ·𝑠 ‘(𝐴s 𝑈)))
1213, 120syl 17 . . . . . . . . . . . . . 14 (𝜑 → ( ·𝑠𝐴) = ( ·𝑠 ‘(𝐴s 𝑈)))
1225, 67ressmulr 16617 . . . . . . . . . . . . . . . 16 (𝑈 ∈ (SubRing‘𝐸) → (.r𝐸) = (.r𝐹))
1233, 122syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (.r𝐸) = (.r𝐹))
12426, 104, 4drgextvsca 31081 . . . . . . . . . . . . . . 15 (𝜑 → (.r𝐹) = ( ·𝑠𝐶))
125123, 118, 1243eqtr3d 2841 . . . . . . . . . . . . . 14 (𝜑 → ( ·𝑠𝐵) = ( ·𝑠𝐶))
126119, 121, 1253eqtr3rd 2842 . . . . . . . . . . . . 13 (𝜑 → ( ·𝑠𝐶) = ( ·𝑠 ‘(𝐴s 𝑈)))
127126oveqdr 7163 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥( ·𝑠𝐶)𝑦) = (𝑥( ·𝑠 ‘(𝐴s 𝑈))𝑦))
128 ovexd 7170 . . . . . . . . . . . 12 (𝜑 → (𝐴s 𝑈) ∈ V)
12987, 91, 92, 103, 116, 127, 108, 128lindspropd 30997 . . . . . . . . . . 11 (𝜑 → (LIndS‘𝐶) = (LIndS‘(𝐴s 𝑈)))
13082, 129eleqtrd 2892 . . . . . . . . . 10 (𝜑𝑋 ∈ (LIndS‘(𝐴s 𝑈)))
13176, 84lsslinds 20520 . . . . . . . . . . 11 ((𝐴 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝐴) ∧ 𝑋𝑈) → (𝑋 ∈ (LIndS‘(𝐴s 𝑈)) ↔ 𝑋 ∈ (LIndS‘𝐴)))
132131biimpa 480 . . . . . . . . . 10 (((𝐴 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝐴) ∧ 𝑋𝑈) ∧ 𝑋 ∈ (LIndS‘(𝐴s 𝑈))) → 𝑋 ∈ (LIndS‘𝐴))
13315, 79, 80, 130, 132syl31anc 1370 . . . . . . . . 9 (𝜑𝑋 ∈ (LIndS‘𝐴))
134 eqid 2798 . . . . . . . . . . 11 (0g𝐴) = (0g𝐴)
135 eqid 2798 . . . . . . . . . . 11 (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐴))
13674, 73, 72, 75, 134, 135islinds5 30983 . . . . . . . . . 10 ((𝐴 ∈ LMod ∧ 𝑋 ⊆ (Base‘𝐴)) → (𝑋 ∈ (LIndS‘𝐴) ↔ ∀𝑤 ∈ ((Base‘(Scalar‘𝐴)) ↑m 𝑋)((𝑤 finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) → 𝑤 = (𝑋 × {(0g‘(Scalar‘𝐴))}))))
137136biimpa 480 . . . . . . . . 9 (((𝐴 ∈ LMod ∧ 𝑋 ⊆ (Base‘𝐴)) ∧ 𝑋 ∈ (LIndS‘𝐴)) → ∀𝑤 ∈ ((Base‘(Scalar‘𝐴)) ↑m 𝑋)((𝑤 finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) → 𝑤 = (𝑋 × {(0g‘(Scalar‘𝐴))})))
13815, 39, 133, 137syl21anc 836 . . . . . . . 8 (𝜑 → ∀𝑤 ∈ ((Base‘(Scalar‘𝐴)) ↑m 𝑋)((𝑤 finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) → 𝑤 = (𝑋 × {(0g‘(Scalar‘𝐴))})))
139138adantr 484 . . . . . . 7 ((𝜑𝑗𝑌) → ∀𝑤 ∈ ((Base‘(Scalar‘𝐴)) ↑m 𝑋)((𝑤 finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) → 𝑤 = (𝑋 × {(0g‘(Scalar‘𝐴))})))
140 eqid 2798 . . . . . . . . . 10 (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑖𝑋 ↦ (𝑗𝑊𝑖))
141 fvexd 6660 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (0g𝐹) ∈ V)
142 fedgmullem.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (LBasis‘𝐵))
143142adantr 484 . . . . . . . . . 10 ((𝜑𝑗𝑌) → 𝑌 ∈ (LBasis‘𝐵))
14416adantr 484 . . . . . . . . . 10 ((𝜑𝑗𝑌) → 𝑋 ∈ (LBasis‘𝐶))
145 fedgmullem2.1 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑌 × 𝑋))))
146 fvexd 6660 . . . . . . . . . . . . . . . 16 (𝜑 → (Scalar‘𝐴) ∈ V)
147142, 16xpexd 7454 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 × 𝑋) ∈ V)
148 eqid 2798 . . . . . . . . . . . . . . . . 17 ((Scalar‘𝐴) freeLMod (𝑌 × 𝑋)) = ((Scalar‘𝐴) freeLMod (𝑌 × 𝑋))
149 eqid 2798 . . . . . . . . . . . . . . . . 17 (Base‘((Scalar‘𝐴) freeLMod (𝑌 × 𝑋))) = (Base‘((Scalar‘𝐴) freeLMod (𝑌 × 𝑋)))
150148, 73, 135, 149frlmelbas 20445 . . . . . . . . . . . . . . . 16 (((Scalar‘𝐴) ∈ V ∧ (𝑌 × 𝑋) ∈ V) → (𝑊 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑌 × 𝑋))) ↔ (𝑊 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ∧ 𝑊 finSupp (0g‘(Scalar‘𝐴)))))
151146, 147, 150syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑌 × 𝑋))) ↔ (𝑊 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ∧ 𝑊 finSupp (0g‘(Scalar‘𝐴)))))
152145, 151mpbid 235 . . . . . . . . . . . . . 14 (𝜑 → (𝑊 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ∧ 𝑊 finSupp (0g‘(Scalar‘𝐴))))
153152simpld 498 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)))
154 fvexd 6660 . . . . . . . . . . . . . 14 (𝜑 → (Base‘(Scalar‘𝐴)) ∈ V)
155154, 147elmapd 8403 . . . . . . . . . . . . 13 (𝜑 → (𝑊 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ↔ 𝑊:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴))))
156153, 155mpbid 235 . . . . . . . . . . . 12 (𝜑𝑊:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
157156ffnd 6488 . . . . . . . . . . 11 (𝜑𝑊 Fn (𝑌 × 𝑋))
158157adantr 484 . . . . . . . . . 10 ((𝜑𝑗𝑌) → 𝑊 Fn (𝑌 × 𝑋))
159 simpr 488 . . . . . . . . . 10 ((𝜑𝑗𝑌) → 𝑗𝑌)
160152simprd 499 . . . . . . . . . . . 12 (𝜑𝑊 finSupp (0g‘(Scalar‘𝐴)))
161 drngring 19502 . . . . . . . . . . . . . . . 16 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
1621, 161syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ Ring)
163 ringmnd 19300 . . . . . . . . . . . . . . 15 (𝐸 ∈ Ring → 𝐸 ∈ Mnd)
164162, 163syl 17 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ Mnd)
165 subrgsubg 19534 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ (SubRing‘𝐸) → 𝑉 ∈ (SubGrp‘𝐸))
1669, 165syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑉 ∈ (SubGrp‘𝐸))
167 eqid 2798 . . . . . . . . . . . . . . . . 17 (0g𝐸) = (0g𝐸)
168167subg0cl 18279 . . . . . . . . . . . . . . . 16 (𝑉 ∈ (SubGrp‘𝐸) → (0g𝐸) ∈ 𝑉)
169166, 168syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (0g𝐸) ∈ 𝑉)
17046, 169sseldd 3916 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐸) ∈ 𝑈)
1715, 21, 167ress0g 17931 . . . . . . . . . . . . . 14 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ 𝑈𝑈 ⊆ (Base‘𝐸)) → (0g𝐸) = (0g𝐹))
172164, 170, 23, 171syl3anc 1368 . . . . . . . . . . . . 13 (𝜑 → (0g𝐸) = (0g𝐹))
17354fveq2d 6649 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐾) = (0g‘(Scalar‘𝐶)))
17411, 167subrg0 19535 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐸) → (0g𝐸) = (0g𝐾))
1759, 174syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐸) = (0g𝐾))
17660fveq2d 6649 . . . . . . . . . . . . . 14 (𝜑 → (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐶)))
177173, 175, 1763eqtr4d 2843 . . . . . . . . . . . . 13 (𝜑 → (0g𝐸) = (0g‘(Scalar‘𝐴)))
178172, 177eqtr3d 2835 . . . . . . . . . . . 12 (𝜑 → (0g𝐹) = (0g‘(Scalar‘𝐴)))
179160, 178breqtrrd 5058 . . . . . . . . . . 11 (𝜑𝑊 finSupp (0g𝐹))
180179adantr 484 . . . . . . . . . 10 ((𝜑𝑗𝑌) → 𝑊 finSupp (0g𝐹))
181140, 141, 143, 144, 158, 159, 180fsuppcurry1 30487 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) finSupp (0g𝐹))
182178adantr 484 . . . . . . . . 9 ((𝜑𝑗𝑌) → (0g𝐹) = (0g‘(Scalar‘𝐴)))
183181, 182breqtrd 5056 . . . . . . . 8 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) finSupp (0g‘(Scalar‘𝐴)))
184 eqidd 2799 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑖𝑋 ↦ (𝑗𝑊𝑖)))
185156fovrnda 7299 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → (𝑗𝑊𝑖) ∈ (Base‘(Scalar‘𝐴)))
186185anassrs 471 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗𝑊𝑖) ∈ (Base‘(Scalar‘𝐴)))
187184, 186fvmpt2d 6758 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖) = (𝑗𝑊𝑖))
188187oveq1d 7150 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖) = ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖))
189119ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ( ·𝑠𝐴) = ( ·𝑠𝐵))
190189oveqd 7152 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖) = ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))
191188, 190eqtrd 2833 . . . . . . . . . . . 12 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖) = ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))
192191mpteq2dva 5125 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖)) = (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))
193192oveq2d 7151 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))) = (𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
1941adantr 484 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝐸 ∈ DivRing)
1959adantr 484 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑉 ∈ (SubRing‘𝐸))
1962adantr 484 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝐾 ∈ DivRing)
19710, 194, 195, 11, 196, 144drgextgsum 31085 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
1983adantr 484 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑈 ∈ (SubRing‘𝐸))
199104adantr 484 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝐹 ∈ DivRing)
200117, 194, 198, 5, 199, 144drgextgsum 31085 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
201197, 200eqtr3d 2835 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
202193, 201eqtrd 2833 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))) = (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
203142mptexd 6964 . . . . . . . . . . . . . 14 (𝜑 → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) ∈ V)
204 eqid 2798 . . . . . . . . . . . . . . . . . 18 (0g𝐵) = (0g𝐵)
205117, 5sralvec 31078 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐵 ∈ LVec)
2061, 104, 3, 205syl3anc 1368 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ LVec)
207 lveclmod 19871 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ LVec → 𝐵 ∈ LMod)
208206, 207syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵 ∈ LMod)
209208adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑌) → 𝐵 ∈ LMod)
210 lmodabl 19674 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ LMod → 𝐵 ∈ Abel)
211209, 210syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑌) → 𝐵 ∈ Abel)
212117a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
213212, 3, 23srasubrg 31077 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑈 ∈ (SubRing‘𝐵))
214 subrgsubg 19534 . . . . . . . . . . . . . . . . . . . 20 (𝑈 ∈ (SubRing‘𝐵) → 𝑈 ∈ (SubGrp‘𝐵))
215213, 214syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈 ∈ (SubGrp‘𝐵))
216215adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑌) → 𝑈 ∈ (SubGrp‘𝐵))
217110ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝐶 ∈ LMod)
21861ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
219186, 218eleqtrd 2892 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗𝑊𝑖) ∈ (Base‘(Scalar‘𝐶)))
22020ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑋 ⊆ (Base‘𝐶))
221 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖𝑋)
222220, 221sseldd 3916 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐶))
22317, 111, 112, 113lmodvscl 19644 . . . . . . . . . . . . . . . . . . . . 21 ((𝐶 ∈ LMod ∧ (𝑗𝑊𝑖) ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑖 ∈ (Base‘𝐶)) → ((𝑗𝑊𝑖)( ·𝑠𝐶)𝑖) ∈ (Base‘𝐶))
224217, 219, 222, 223syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝑗𝑊𝑖)( ·𝑠𝐶)𝑖) ∈ (Base‘𝐶))
225125oveqd 7152 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖) = ((𝑗𝑊𝑖)( ·𝑠𝐶)𝑖))
226225ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖) = ((𝑗𝑊𝑖)( ·𝑠𝐶)𝑖))
22732ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑈 = (Base‘𝐶))
228224, 226, 2273eltr4d 2905 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖) ∈ 𝑈)
229228fmpttd 6856 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)):𝑋𝑈)
230212, 23srasca 19946 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
2315, 230syl5eq 2845 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹 = (Scalar‘𝐵))
232231adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑌) → 𝐹 = (Scalar‘𝐵))
233 eqid 2798 . . . . . . . . . . . . . . . . . . 19 (Base‘𝐵) = (Base‘𝐵)
234 ovexd 7170 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗𝑊𝑖) ∈ V)
23520, 33sstrd 3925 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋 ⊆ (Base‘𝐸))
236235adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → 𝑋 ⊆ (Base‘𝐸))
237 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → 𝑖𝑋)
238236, 237sseldd 3916 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → 𝑖 ∈ (Base‘𝐸))
239238anassrs 471 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐸))
240212, 23srabase 19943 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (Base‘𝐸) = (Base‘𝐵))
241240ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (Base‘𝐸) = (Base‘𝐵))
242239, 241eleqtrd 2892 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐵))
243 eqid 2798 . . . . . . . . . . . . . . . . . . 19 (0g𝐹) = (0g𝐹)
244 eqid 2798 . . . . . . . . . . . . . . . . . . 19 ( ·𝑠𝐵) = ( ·𝑠𝐵)
245144, 209, 232, 233, 234, 242, 204, 243, 244, 181mptscmfsupp0 19692 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)) finSupp (0g𝐵))
246204, 211, 144, 216, 229, 245gsumsubgcl 19033 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑌) → (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) ∈ 𝑈)
247231fveq2d 6649 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐵)))
24825, 247eqtrd 2833 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 = (Base‘(Scalar‘𝐵)))
249248adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑌) → 𝑈 = (Base‘(Scalar‘𝐵)))
250246, 249eleqtrd 2892 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑌) → (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) ∈ (Base‘(Scalar‘𝐵)))
251250fmpttd 6856 . . . . . . . . . . . . . . 15 (𝜑 → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))):𝑌⟶(Base‘(Scalar‘𝐵)))
252251ffund 6491 . . . . . . . . . . . . . 14 (𝜑 → Fun (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))))
253 fvexd 6660 . . . . . . . . . . . . . 14 (𝜑 → (0g‘(Scalar‘𝐵)) ∈ V)
254 fconstmpt 5578 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 × {(0g‘(Scalar‘𝐴))}) = (𝑖𝑋 ↦ (0g‘(Scalar‘𝐴)))
255254eqeq2i 2811 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑋 ↦ (𝑘𝑊𝑖)) = (𝑋 × {(0g‘(Scalar‘𝐴))}) ↔ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) = (𝑖𝑋 ↦ (0g‘(Scalar‘𝐴))))
256 ovex 7168 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝑊𝑖) ∈ V
257256rgenw 3118 . . . . . . . . . . . . . . . . . . . . 21 𝑖𝑋 (𝑘𝑊𝑖) ∈ V
258 mpteqb 6764 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑖𝑋 (𝑘𝑊𝑖) ∈ V → ((𝑖𝑋 ↦ (𝑘𝑊𝑖)) = (𝑖𝑋 ↦ (0g‘(Scalar‘𝐴))) ↔ ∀𝑖𝑋 (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴))))
259257, 258ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑋 ↦ (𝑘𝑊𝑖)) = (𝑖𝑋 ↦ (0g‘(Scalar‘𝐴))) ↔ ∀𝑖𝑋 (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴)))
260255, 259bitri 278 . . . . . . . . . . . . . . . . . . 19 ((𝑖𝑋 ↦ (𝑘𝑊𝑖)) = (𝑋 × {(0g‘(Scalar‘𝐴))}) ↔ ∀𝑖𝑋 (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴)))
261260necon3abii 3033 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))}) ↔ ¬ ∀𝑖𝑋 (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴)))
262 df-ov 7138 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘𝑊𝑖) = (𝑊‘⟨𝑘, 𝑖⟩)
263262eqcomi 2807 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑊‘⟨𝑘, 𝑖⟩) = (𝑘𝑊𝑖)
264263a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘𝑌) ∧ 𝑖𝑋) → (𝑊‘⟨𝑘, 𝑖⟩) = (𝑘𝑊𝑖))
265264eqeq1d 2800 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝑌) ∧ 𝑖𝑋) → ((𝑊‘⟨𝑘, 𝑖⟩) = (0g‘(Scalar‘𝐴)) ↔ (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴))))
266265necon3abid 3023 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘𝑌) ∧ 𝑖𝑋) → ((𝑊‘⟨𝑘, 𝑖⟩) ≠ (0g‘(Scalar‘𝐴)) ↔ ¬ (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴))))
267266rexbidva 3255 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑌) → (∃𝑖𝑋 (𝑊‘⟨𝑘, 𝑖⟩) ≠ (0g‘(Scalar‘𝐴)) ↔ ∃𝑖𝑋 ¬ (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴))))
268 rexnal 3201 . . . . . . . . . . . . . . . . . . 19 (∃𝑖𝑋 ¬ (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴)) ↔ ¬ ∀𝑖𝑋 (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴)))
269267, 268syl6rbb 291 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑌) → (¬ ∀𝑖𝑋 (𝑘𝑊𝑖) = (0g‘(Scalar‘𝐴)) ↔ ∃𝑖𝑋 (𝑊‘⟨𝑘, 𝑖⟩) ≠ (0g‘(Scalar‘𝐴))))
270261, 269syl5bb 286 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑌) → ((𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))}) ↔ ∃𝑖𝑋 (𝑊‘⟨𝑘, 𝑖⟩) ≠ (0g‘(Scalar‘𝐴))))
271270rabbidva 3425 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})} = {𝑘𝑌 ∣ ∃𝑖𝑋 (𝑊‘⟨𝑘, 𝑖⟩) ≠ (0g‘(Scalar‘𝐴))})
272 fveq2 6645 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑘, 𝑖⟩ → (𝑊𝑧) = (𝑊‘⟨𝑘, 𝑖⟩))
273272neeq1d 3046 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨𝑘, 𝑖⟩ → ((𝑊𝑧) ≠ (0g‘(Scalar‘𝐴)) ↔ (𝑊‘⟨𝑘, 𝑖⟩) ≠ (0g‘(Scalar‘𝐴))))
274273dmrab 30267 . . . . . . . . . . . . . . . 16 dom {𝑧 ∈ (𝑌 × 𝑋) ∣ (𝑊𝑧) ≠ (0g‘(Scalar‘𝐴))} = {𝑘𝑌 ∣ ∃𝑖𝑋 (𝑊‘⟨𝑘, 𝑖⟩) ≠ (0g‘(Scalar‘𝐴))}
275271, 274eqtr4di 2851 . . . . . . . . . . . . . . 15 (𝜑 → {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})} = dom {𝑧 ∈ (𝑌 × 𝑋) ∣ (𝑊𝑧) ≠ (0g‘(Scalar‘𝐴))})
276 fvexd 6660 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g‘(Scalar‘𝐴)) ∈ V)
277 suppvalfn 7820 . . . . . . . . . . . . . . . . . 18 ((𝑊 Fn (𝑌 × 𝑋) ∧ (𝑌 × 𝑋) ∈ V ∧ (0g‘(Scalar‘𝐴)) ∈ V) → (𝑊 supp (0g‘(Scalar‘𝐴))) = {𝑧 ∈ (𝑌 × 𝑋) ∣ (𝑊𝑧) ≠ (0g‘(Scalar‘𝐴))})
278157, 147, 276, 277syl3anc 1368 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑊 supp (0g‘(Scalar‘𝐴))) = {𝑧 ∈ (𝑌 × 𝑋) ∣ (𝑊𝑧) ≠ (0g‘(Scalar‘𝐴))})
279160fsuppimpd 8824 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑊 supp (0g‘(Scalar‘𝐴))) ∈ Fin)
280278, 279eqeltrrd 2891 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑧 ∈ (𝑌 × 𝑋) ∣ (𝑊𝑧) ≠ (0g‘(Scalar‘𝐴))} ∈ Fin)
281 dmfi 8786 . . . . . . . . . . . . . . . 16 ({𝑧 ∈ (𝑌 × 𝑋) ∣ (𝑊𝑧) ≠ (0g‘(Scalar‘𝐴))} ∈ Fin → dom {𝑧 ∈ (𝑌 × 𝑋) ∣ (𝑊𝑧) ≠ (0g‘(Scalar‘𝐴))} ∈ Fin)
282280, 281syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom {𝑧 ∈ (𝑌 × 𝑋) ∣ (𝑊𝑧) ≠ (0g‘(Scalar‘𝐴))} ∈ Fin)
283275, 282eqeltrd 2890 . . . . . . . . . . . . . 14 (𝜑 → {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})} ∈ Fin)
284 nfv 1915 . . . . . . . . . . . . . . . . . . 19 𝑖𝜑
285 nfcv 2955 . . . . . . . . . . . . . . . . . . . . 21 𝑖𝑌
286 nfmpt1 5128 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖(𝑖𝑋 ↦ (𝑘𝑊𝑖))
287 nfcv 2955 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖(𝑋 × {(0g‘(Scalar‘𝐴))})
288286, 287nfne 3087 . . . . . . . . . . . . . . . . . . . . . 22 𝑖(𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})
289288, 285nfrabw 3338 . . . . . . . . . . . . . . . . . . . . 21 𝑖{𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})}
290285, 289nfdif 4053 . . . . . . . . . . . . . . . . . . . 20 𝑖(𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})
291290nfcri 2943 . . . . . . . . . . . . . . . . . . 19 𝑖 𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})
292284, 291nfan 1900 . . . . . . . . . . . . . . . . . 18 𝑖(𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})}))
293 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → 𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})}))
294293eldifad 3893 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → 𝑗𝑌)
295293eldifbd 3894 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → ¬ 𝑗 ∈ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})
296 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = 𝑗 → (𝑘𝑊𝑖) = (𝑗𝑊𝑖))
297296mpteq2dv 5126 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 = 𝑗 → (𝑖𝑋 ↦ (𝑘𝑊𝑖)) = (𝑖𝑋 ↦ (𝑗𝑊𝑖)))
298297neeq1d 3046 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 = 𝑗 → ((𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))}) ↔ (𝑖𝑋 ↦ (𝑗𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})))
299298elrab 3628 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 ∈ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})} ↔ (𝑗𝑌 ∧ (𝑖𝑋 ↦ (𝑗𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})))
300295, 299sylnib 331 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → ¬ (𝑗𝑌 ∧ (𝑖𝑋 ↦ (𝑗𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})))
301294, 300mpnanrd 413 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → ¬ (𝑖𝑋 ↦ (𝑗𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))}))
302 nne 2991 . . . . . . . . . . . . . . . . . . . . . . . 24 (¬ (𝑖𝑋 ↦ (𝑗𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))}) ↔ (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑋 × {(0g‘(Scalar‘𝐴))}))
303301, 302sylib 221 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑋 × {(0g‘(Scalar‘𝐴))}))
304303, 254eqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑖𝑋 ↦ (0g‘(Scalar‘𝐴))))
305 ovex 7168 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗𝑊𝑖) ∈ V
306305rgenw 3118 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖𝑋 (𝑗𝑊𝑖) ∈ V
307 mpteqb 6764 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑖𝑋 (𝑗𝑊𝑖) ∈ V → ((𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑖𝑋 ↦ (0g‘(Scalar‘𝐴))) ↔ ∀𝑖𝑋 (𝑗𝑊𝑖) = (0g‘(Scalar‘𝐴))))
308306, 307ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑖𝑋 ↦ (0g‘(Scalar‘𝐴))) ↔ ∀𝑖𝑋 (𝑗𝑊𝑖) = (0g‘(Scalar‘𝐴)))
309304, 308sylib 221 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → ∀𝑖𝑋 (𝑗𝑊𝑖) = (0g‘(Scalar‘𝐴)))
310309r19.21bi 3173 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) ∧ 𝑖𝑋) → (𝑗𝑊𝑖) = (0g‘(Scalar‘𝐴)))
311310oveq1d 7150 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) ∧ 𝑖𝑋) → ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖) = ((0g‘(Scalar‘𝐴))( ·𝑠𝐵)𝑖))
312117, 1, 3drgext0g 31080 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0g𝐸) = (0g𝐵))
313117, 1, 3drgext0gsca 31082 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0g𝐵) = (0g‘(Scalar‘𝐵)))
314312, 177, 3133eqtr3d 2841 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐵)))
315314ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) ∧ 𝑖𝑋) → (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐵)))
316315oveq1d 7150 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) ∧ 𝑖𝑋) → ((0g‘(Scalar‘𝐴))( ·𝑠𝐵)𝑖) = ((0g‘(Scalar‘𝐵))( ·𝑠𝐵)𝑖))
317208ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) ∧ 𝑖𝑋) → 𝐵 ∈ LMod)
318294, 242syldanl 604 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐵))
319 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (Scalar‘𝐵) = (Scalar‘𝐵)
320 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (0g‘(Scalar‘𝐵)) = (0g‘(Scalar‘𝐵))
321233, 319, 244, 320, 204lmod0vs 19660 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ LMod ∧ 𝑖 ∈ (Base‘𝐵)) → ((0g‘(Scalar‘𝐵))( ·𝑠𝐵)𝑖) = (0g𝐵))
322317, 318, 321syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) ∧ 𝑖𝑋) → ((0g‘(Scalar‘𝐵))( ·𝑠𝐵)𝑖) = (0g𝐵))
323311, 316, 3223eqtrd 2837 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) ∧ 𝑖𝑋) → ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖) = (0g𝐵))
324292, 323mpteq2da 5124 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)) = (𝑖𝑋 ↦ (0g𝐵)))
325324oveq2d 7151 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (𝐵 Σg (𝑖𝑋 ↦ (0g𝐵))))
326208, 210syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ Abel)
327 ablgrp 18903 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ Abel → 𝐵 ∈ Grp)
328 grpmnd 18102 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ Grp → 𝐵 ∈ Mnd)
329326, 327, 3283syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ Mnd)
330204gsumz 17992 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ Mnd ∧ 𝑋 ∈ (LBasis‘𝐶)) → (𝐵 Σg (𝑖𝑋 ↦ (0g𝐵))) = (0g𝐵))
331329, 16, 330syl2anc 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 Σg (𝑖𝑋 ↦ (0g𝐵))) = (0g𝐵))
332331adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → (𝐵 Σg (𝑖𝑋 ↦ (0g𝐵))) = (0g𝐵))
333313adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → (0g𝐵) = (0g‘(Scalar‘𝐵)))
334325, 332, 3333eqtrd 2837 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑌 ∖ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (0g‘(Scalar‘𝐵)))
335334, 142suppss2 7847 . . . . . . . . . . . . . 14 (𝜑 → ((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) supp (0g‘(Scalar‘𝐵))) ⊆ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})
336 suppssfifsupp 8832 . . . . . . . . . . . . . 14 ((((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) ∈ V ∧ Fun (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) ∧ (0g‘(Scalar‘𝐵)) ∈ V) ∧ ({𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})} ∈ Fin ∧ ((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) supp (0g‘(Scalar‘𝐵))) ⊆ {𝑘𝑌 ∣ (𝑖𝑋 ↦ (𝑘𝑊𝑖)) ≠ (𝑋 × {(0g‘(Scalar‘𝐴))})})) → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) finSupp (0g‘(Scalar‘𝐵)))
337203, 252, 253, 283, 335, 336syl32anc 1375 . . . . . . . . . . . . 13 (𝜑 → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) finSupp (0g‘(Scalar‘𝐵)))
338 eqidd 2799 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))))
339 ovexd 7170 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑌) → (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) ∈ V)
340338, 339fvmpt2d 6758 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑌) → ((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗) = (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
341340oveq1d 7150 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑌) → (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗) = ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))
342341mpteq2dva 5125 . . . . . . . . . . . . . . 15 (𝜑 → (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗)) = (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗)))
343342oveq2d 7151 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 Σg (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))) = (𝐵 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))))
344119adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑌) → ( ·𝑠𝐴) = ( ·𝑠𝐵))
34543ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (.r𝐸) = ( ·𝑠𝐴))
346345oveqd 7152 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝑗𝑊𝑖)(.r𝐸)𝑖) = ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖))
347346mpteq2dva 5125 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)) = (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))
348118adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗𝑌) → (.r𝐸) = ( ·𝑠𝐵))
349348oveqd 7152 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑌) → ((𝑗𝑊𝑖)(.r𝐸)𝑖) = ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))
350349mpteq2dv 5126 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)) = (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))
351347, 350eqtr3d 2835 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)) = (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))
352351oveq2d 7151 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑌) → (𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖))) = (𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
353 eqidd 2799 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑌) → 𝑗 = 𝑗)
354344, 352, 353oveq123d 7156 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑌) → ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗) = ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))
355201oveq1d 7150 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑌) → ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗) = ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))
356354, 355eqtrd 2833 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑌) → ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗) = ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))
357356mpteq2dva 5125 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑗𝑌 ↦ ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗)) = (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗)))
358357oveq2d 7151 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 Σg (𝑗𝑌 ↦ ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗))) = (𝐴 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))))
35910, 21sraring 31075 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 ∈ Ring ∧ 𝑉 ⊆ (Base‘𝐸)) → 𝐴 ∈ Ring)
360162, 36, 359syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ Ring)
361 ringcmn 19327 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ Ring → 𝐴 ∈ CMnd)
362360, 361syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ CMnd)
363162adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → 𝐸 ∈ Ring)
364 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (LBasis‘𝐵) = (LBasis‘𝐵)
365233, 364lbsss 19842 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑌 ∈ (LBasis‘𝐵) → 𝑌 ⊆ (Base‘𝐵))
366142, 365syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑌 ⊆ (Base‘𝐵))
367366, 240sseqtrrd 3956 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑌 ⊆ (Base‘𝐸))
368367adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → 𝑌 ⊆ (Base‘𝐸))
369 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → 𝑗𝑌)
370368, 369sseldd 3916 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → 𝑗 ∈ (Base‘𝐸))
37121, 67ringcl 19307 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐸 ∈ Ring ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
372363, 238, 370, 371syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
37337adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → (Base‘𝐸) = (Base‘𝐴))
374372, 373eleqtrd 2892 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
375374ralrimivva 3156 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑗𝑌𝑖𝑋 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
376 fedgmullem.d . . . . . . . . . . . . . . . . . . . . 21 𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))
377376fmpo 7748 . . . . . . . . . . . . . . . . . . . 20 (∀𝑗𝑌𝑖𝑋 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴) ↔ 𝐷:(𝑌 × 𝑋)⟶(Base‘𝐴))
378375, 377sylib 221 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷:(𝑌 × 𝑋)⟶(Base‘𝐴))
37972, 73, 75, 74, 15, 156, 378, 147lcomf 19666 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑊f ( ·𝑠𝐴)𝐷):(𝑌 × 𝑋)⟶(Base‘𝐴))
38072, 73, 75, 74, 15, 156, 378, 147, 134, 135, 160lcomfsupp 19667 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑊f ( ·𝑠𝐴)𝐷) finSupp (0g𝐴))
38174, 134, 362, 142, 16, 379, 380gsumxp 19089 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 Σg (𝑊f ( ·𝑠𝐴)𝐷)) = (𝐴 Σg (𝑗𝑌 ↦ (𝐴 Σg (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖))))))
382 fedgmullem2.2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 Σg (𝑊f ( ·𝑠𝐴)𝐷)) = (0g𝐴))
3831623ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗𝑌𝑖𝑋) → 𝐸 ∈ Ring)
3841563ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑗𝑌𝑖𝑋) → 𝑊:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
38557, 55eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑉 = (Base‘(Scalar‘𝐶)))
386385, 36eqsstrrd 3954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
38761, 386eqsstrd 3953 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐸))
388387, 37sseqtrd 3955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐴))
3893883ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑗𝑌𝑖𝑋) → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐴))
390384, 389fssd 6502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑗𝑌𝑖𝑋) → 𝑊:(𝑌 × 𝑋)⟶(Base‘𝐴))
391 simp2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑗𝑌𝑖𝑋) → 𝑗𝑌)
392 simp3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑗𝑌𝑖𝑋) → 𝑖𝑋)
393390, 391, 392fovrnd 7300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑗𝑌𝑖𝑋) → (𝑗𝑊𝑖) ∈ (Base‘𝐴))
394373ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑗𝑌𝑖𝑋) → (Base‘𝐸) = (Base‘𝐴))
395393, 394eleqtrrd 2893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗𝑌𝑖𝑋) → (𝑗𝑊𝑖) ∈ (Base‘𝐸))
3962383impb 1112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗𝑌𝑖𝑋) → 𝑖 ∈ (Base‘𝐸))
3973703impb 1112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗𝑌𝑖𝑋) → 𝑗 ∈ (Base‘𝐸))
39821, 67ringass 19310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐸 ∈ Ring ∧ ((𝑗𝑊𝑖) ∈ (Base‘𝐸) ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸))) → (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) = ((𝑗𝑊𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
399383, 395, 396, 397, 398syl13anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗𝑌𝑖𝑋) → (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) = ((𝑗𝑊𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
400399mpoeq3dva 7210 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑗𝑌, 𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗)) = (𝑗𝑌, 𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))))
401 ovexd 7170 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗𝑌𝑖𝑋) → (𝑗𝑊𝑖) ∈ V)
402 ovexd 7170 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗𝑌𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ V)
403 fnov 7261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑊 Fn (𝑌 × 𝑋) ↔ 𝑊 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑗𝑊𝑖)))
404157, 403sylib 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑊 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑗𝑊𝑖)))
405376a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗)))
406142, 16, 401, 402, 404, 405offval22 7766 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑊f (.r𝐸)𝐷) = (𝑗𝑌, 𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))))
407 ofeq 7391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((.r𝐸) = ( ·𝑠𝐴) → ∘f (.r𝐸) = ∘f ( ·𝑠𝐴))
40843, 407syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ∘f (.r𝐸) = ∘f ( ·𝑠𝐴))
409408oveqd 7152 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑊f (.r𝐸)𝐷) = (𝑊f ( ·𝑠𝐴)𝐷))
410400, 406, 4093eqtr2rd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑊f ( ·𝑠𝐴)𝐷) = (𝑗𝑌, 𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗)))
411410ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑊f ( ·𝑠𝐴)𝐷) = (𝑗𝑌, 𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗)))
412411oveqd 7152 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖) = (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))𝑖))
413 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑗𝑌)
414 ovexd 7170 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) ∈ V)
415 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗𝑌, 𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗)) = (𝑗𝑌, 𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))
416415ovmpt4g 7276 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗𝑌𝑖𝑋 ∧ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) ∈ V) → (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))𝑖) = (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))
417413, 221, 414, 416syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))𝑖) = (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))
418412, 417eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖) = (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))
419418mpteq2dva 5125 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖)) = (𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗)))
420419oveq2d 7151 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖))) = (𝐸 Σg (𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))))
421162adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑌) → 𝐸 ∈ Ring)
422367sselda 3915 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑌) → 𝑗 ∈ (Base‘𝐸))
423162ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝐸 ∈ Ring)
424386ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
425424, 219sseldd 3916 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗𝑊𝑖) ∈ (Base‘𝐸))
42621, 67ringcl 19307 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐸 ∈ Ring ∧ (𝑗𝑊𝑖) ∈ (Base‘𝐸) ∧ 𝑖 ∈ (Base‘𝐸)) → ((𝑗𝑊𝑖)(.r𝐸)𝑖) ∈ (Base‘𝐸))
427423, 425, 239, 426syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝑗𝑊𝑖)(.r𝐸)𝑖) ∈ (Base‘𝐸))
428312adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗𝑌) → (0g𝐸) = (0g𝐵))
429245, 350, 4283brtr4d 5062 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)) finSupp (0g𝐸))
43021, 167, 93, 67, 421, 144, 422, 427, 429gsummulc1 19352 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝑗𝑊𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))) = ((𝐸 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗))
431420, 430eqtrd 2833 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖))) = ((𝐸 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗))
432144mptexd 6964 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖)) ∈ V)
43315adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → 𝐴 ∈ LMod)
43436adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → 𝑉 ⊆ (Base‘𝐸))
43510, 432, 194, 433, 434gsumsra 30732 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖))) = (𝐴 Σg (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖))))
436144mptexd 6964 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)) ∈ V)
43710, 436, 194, 433, 434gsumsra 30732 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖))) = (𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖))))
438437oveq1d 7150 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → ((𝐸 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗) = ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗))
43943adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑌) → (.r𝐸) = ( ·𝑠𝐴))
440347oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑌) → (𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖))) = (𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖))))
441439, 440, 353oveq123d 7156 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑌) → ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗) = ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗))
442438, 441eqtrd 2833 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑌) → ((𝐸 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗) = ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗))
443431, 435, 4423eqtr3d 2841 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑌) → (𝐴 Σg (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖))) = ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗))
444443mpteq2dva 5125 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑗𝑌 ↦ (𝐴 Σg (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖)))) = (𝑗𝑌 ↦ ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗)))
445444oveq2d 7151 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 Σg (𝑗𝑌 ↦ (𝐴 Σg (𝑖𝑋 ↦ (𝑗(𝑊f ( ·𝑠𝐴)𝐷)𝑖))))) = (𝐴 Σg (𝑗𝑌 ↦ ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗))))
446381, 382, 4453eqtr3rd 2842 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 Σg (𝑗𝑌 ↦ ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗))) = (0g𝐴))
44710, 1, 9drgext0g 31080 . . . . . . . . . . . . . . . 16 (𝜑 → (0g𝐸) = (0g𝐴))
448446, 447, 3123eqtr2d 2839 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 Σg (𝑗𝑌 ↦ ((𝐴 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐴)𝑖)))( ·𝑠𝐴)𝑗))) = (0g𝐵))
44910, 1, 9, 11, 2, 142drgextgsum 31085 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))) = (𝐴 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))))
450117, 1, 3, 5, 104, 142drgextgsum 31085 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))) = (𝐵 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))))
451449, 450eqtr3d 2835 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))) = (𝐵 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))))
452358, 448, 4513eqtr3rd 2842 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 Σg (𝑗𝑌 ↦ ((𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))( ·𝑠𝐵)𝑗))) = (0g𝐵))
453343, 452eqtrd 2833 . . . . . . . . . . . . 13 (𝜑 → (𝐵 Σg (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵))
454 breq1 5033 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → (𝑏 finSupp (0g‘(Scalar‘𝐵)) ↔ (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) finSupp (0g‘(Scalar‘𝐵))))
455 nfmpt1 5128 . . . . . . . . . . . . . . . . . . . 20 𝑗(𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
456455nfeq2 2972 . . . . . . . . . . . . . . . . . . 19 𝑗 𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))
457 fveq1 6644 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → (𝑏𝑗) = ((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗))
458457oveq1d 7150 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → ((𝑏𝑗)( ·𝑠𝐵)𝑗) = (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))
459458adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) ∧ 𝑗𝑌) → ((𝑏𝑗)( ·𝑠𝐵)𝑗) = (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))
460456, 459mpteq2da 5124 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → (𝑗𝑌 ↦ ((𝑏𝑗)( ·𝑠𝐵)𝑗)) = (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗)))
461460oveq2d 7151 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → (𝐵 Σg (𝑗𝑌 ↦ ((𝑏𝑗)( ·𝑠𝐵)𝑗))) = (𝐵 Σg (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))))
462461eqeq1d 2800 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → ((𝐵 Σg (𝑗𝑌 ↦ ((𝑏𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵) ↔ (𝐵 Σg (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵)))
463454, 462anbi12d 633 . . . . . . . . . . . . . . 15 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → ((𝑏 finSupp (0g‘(Scalar‘𝐵)) ∧ (𝐵 Σg (𝑗𝑌 ↦ ((𝑏𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵)) ↔ ((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) finSupp (0g‘(Scalar‘𝐵)) ∧ (𝐵 Σg (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵))))
464 eqeq1 2802 . . . . . . . . . . . . . . 15 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → (𝑏 = (𝑌 × {(0g‘(Scalar‘𝐵))}) ↔ (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) = (𝑌 × {(0g‘(Scalar‘𝐵))})))
465463, 464imbi12d 348 . . . . . . . . . . . . . 14 (𝑏 = (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) → (((𝑏 finSupp (0g‘(Scalar‘𝐵)) ∧ (𝐵 Σg (𝑗𝑌 ↦ ((𝑏𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵)) → 𝑏 = (𝑌 × {(0g‘(Scalar‘𝐵))})) ↔ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) finSupp (0g‘(Scalar‘𝐵)) ∧ (𝐵 Σg (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵)) → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) = (𝑌 × {(0g‘(Scalar‘𝐵))}))))
466364lbslinds 20522 . . . . . . . . . . . . . . . 16 (LBasis‘𝐵) ⊆ (LIndS‘𝐵)
467466, 142sseldi 3913 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (LIndS‘𝐵))
468 eqid 2798 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝐵)) = (Base‘(Scalar‘𝐵))
469233, 468, 319, 244, 204, 320islinds5 30983 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ LMod ∧ 𝑌 ⊆ (Base‘𝐵)) → (𝑌 ∈ (LIndS‘𝐵) ↔ ∀𝑏 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑌)((𝑏 finSupp (0g‘(Scalar‘𝐵)) ∧ (𝐵 Σg (𝑗𝑌 ↦ ((𝑏𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵)) → 𝑏 = (𝑌 × {(0g‘(Scalar‘𝐵))}))))
470469biimpa 480 . . . . . . . . . . . . . . 15 (((𝐵 ∈ LMod ∧ 𝑌 ⊆ (Base‘𝐵)) ∧ 𝑌 ∈ (LIndS‘𝐵)) → ∀𝑏 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑌)((𝑏 finSupp (0g‘(Scalar‘𝐵)) ∧ (𝐵 Σg (𝑗𝑌 ↦ ((𝑏𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵)) → 𝑏 = (𝑌 × {(0g‘(Scalar‘𝐵))})))
471208, 366, 467, 470syl21anc 836 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑏 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑌)((𝑏 finSupp (0g‘(Scalar‘𝐵)) ∧ (𝐵 Σg (𝑗𝑌 ↦ ((𝑏𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵)) → 𝑏 = (𝑌 × {(0g‘(Scalar‘𝐵))})))
472 fvexd 6660 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘(Scalar‘𝐵)) ∈ V)
473 elmapg 8402 . . . . . . . . . . . . . . . 16 (((Base‘(Scalar‘𝐵)) ∈ V ∧ 𝑌 ∈ (LBasis‘𝐵)) → ((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑌) ↔ (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))):𝑌⟶(Base‘(Scalar‘𝐵))))
474473biimpar 481 . . . . . . . . . . . . . . 15 ((((Base‘(Scalar‘𝐵)) ∈ V ∧ 𝑌 ∈ (LBasis‘𝐵)) ∧ (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))):𝑌⟶(Base‘(Scalar‘𝐵))) → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑌))
475472, 142, 251, 474syl21anc 836 . . . . . . . . . . . . . 14 (𝜑 → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑌))
476465, 471, 475rspcdva 3573 . . . . . . . . . . . . 13 (𝜑 → (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) finSupp (0g‘(Scalar‘𝐵)) ∧ (𝐵 Σg (𝑗𝑌 ↦ (((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))))‘𝑗)( ·𝑠𝐵)𝑗))) = (0g𝐵)) → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) = (𝑌 × {(0g‘(Scalar‘𝐵))})))
477337, 453, 476mp2and 698 . . . . . . . . . . . 12 (𝜑 → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) = (𝑌 × {(0g‘(Scalar‘𝐵))}))
478 fconstmpt 5578 . . . . . . . . . . . 12 (𝑌 × {(0g‘(Scalar‘𝐵))}) = (𝑗𝑌 ↦ (0g‘(Scalar‘𝐵)))
479477, 478eqtrdi 2849 . . . . . . . . . . 11 (𝜑 → (𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) = (𝑗𝑌 ↦ (0g‘(Scalar‘𝐵))))
480 ovex 7168 . . . . . . . . . . . . 13 (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) ∈ V
481480rgenw 3118 . . . . . . . . . . . 12 𝑗𝑌 (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) ∈ V
482 mpteqb 6764 . . . . . . . . . . . 12 (∀𝑗𝑌 (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) ∈ V → ((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) = (𝑗𝑌 ↦ (0g‘(Scalar‘𝐵))) ↔ ∀𝑗𝑌 (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (0g‘(Scalar‘𝐵))))
483481, 482ax-mp 5 . . . . . . . . . . 11 ((𝑗𝑌 ↦ (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖)))) = (𝑗𝑌 ↦ (0g‘(Scalar‘𝐵))) ↔ ∀𝑗𝑌 (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (0g‘(Scalar‘𝐵)))
484479, 483sylib 221 . . . . . . . . . 10 (𝜑 → ∀𝑗𝑌 (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (0g‘(Scalar‘𝐵)))
485484r19.21bi 3173 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝐵 Σg (𝑖𝑋 ↦ ((𝑗𝑊𝑖)( ·𝑠𝐵)𝑖))) = (0g‘(Scalar‘𝐵)))
486312, 447, 3133eqtr3rd 2842 . . . . . . . . . 10 (𝜑 → (0g‘(Scalar‘𝐵)) = (0g𝐴))
487486adantr 484 . . . . . . . . 9 ((𝜑𝑗𝑌) → (0g‘(Scalar‘𝐵)) = (0g𝐴))
488202, 485, 4873eqtrd 2837 . . . . . . . 8 ((𝜑𝑗𝑌) → (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴))
489183, 488jca 515 . . . . . . 7 ((𝜑𝑗𝑌) → ((𝑖𝑋 ↦ (𝑗𝑊𝑖)) finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)))
490186fmpttd 6856 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)):𝑋⟶(Base‘(Scalar‘𝐴)))
491 fvexd 6660 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (Base‘(Scalar‘𝐴)) ∈ V)
492491, 144elmapd 8403 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝑖𝑋 ↦ (𝑗𝑊𝑖)) ∈ ((Base‘(Scalar‘𝐴)) ↑m 𝑋) ↔ (𝑖𝑋 ↦ (𝑗𝑊𝑖)):𝑋⟶(Base‘(Scalar‘𝐴))))
493490, 492mpbird 260 . . . . . . . 8 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) ∈ ((Base‘(Scalar‘𝐴)) ↑m 𝑋))
494 simpr 488 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) → 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖)))
495494breq1d 5040 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) → (𝑤 finSupp (0g‘(Scalar‘𝐴)) ↔ (𝑖𝑋 ↦ (𝑗𝑊𝑖)) finSupp (0g‘(Scalar‘𝐴))))
496 nfv 1915 . . . . . . . . . . . . . 14 𝑖(𝜑𝑗𝑌)
497 nfmpt1 5128 . . . . . . . . . . . . . . 15 𝑖(𝑖𝑋 ↦ (𝑗𝑊𝑖))
498497nfeq2 2972 . . . . . . . . . . . . . 14 𝑖 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))
499496, 498nfan 1900 . . . . . . . . . . . . 13 𝑖((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖)))
500 simplr 768 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) ∧ 𝑖𝑋) → 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖)))
501500fveq1d 6647 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) ∧ 𝑖𝑋) → (𝑤𝑖) = ((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖))
502501oveq1d 7150 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) ∧ 𝑖𝑋) → ((𝑤𝑖)( ·𝑠𝐴)𝑖) = (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))
503499, 502mpteq2da 5124 . . . . . . . . . . . 12 (((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) → (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖)) = (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖)))
504503oveq2d 7151 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) → (𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))))
505504eqeq1d 2800 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) → ((𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴) ↔ (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)))
506495, 505anbi12d 633 . . . . . . . . 9 (((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) → ((𝑤 finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) ↔ ((𝑖𝑋 ↦ (𝑗𝑊𝑖)) finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴))))
507494eqeq1d 2800 . . . . . . . . 9 (((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) → (𝑤 = (𝑋 × {(0g‘(Scalar‘𝐴))}) ↔ (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑋 × {(0g‘(Scalar‘𝐴))})))
508506, 507imbi12d 348 . . . . . . . 8 (((𝜑𝑗𝑌) ∧ 𝑤 = (𝑖𝑋 ↦ (𝑗𝑊𝑖))) → (((𝑤 finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) → 𝑤 = (𝑋 × {(0g‘(Scalar‘𝐴))})) ↔ (((𝑖𝑋 ↦ (𝑗𝑊𝑖)) finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑋 × {(0g‘(Scalar‘𝐴))}))))
509493, 508rspcdv 3563 . . . . . . 7 ((𝜑𝑗𝑌) → (∀𝑤 ∈ ((Base‘(Scalar‘𝐴)) ↑m 𝑋)((𝑤 finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ ((𝑤𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) → 𝑤 = (𝑋 × {(0g‘(Scalar‘𝐴))})) → (((𝑖𝑋 ↦ (𝑗𝑊𝑖)) finSupp (0g‘(Scalar‘𝐴)) ∧ (𝐴 Σg (𝑖𝑋 ↦ (((𝑖𝑋 ↦ (𝑗𝑊𝑖))‘𝑖)( ·𝑠𝐴)𝑖))) = (0g𝐴)) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑋 × {(0g‘(Scalar‘𝐴))}))))
510139, 489, 509mp2d 49 . . . . . 6 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑋 × {(0g‘(Scalar‘𝐴))}))
511510, 254eqtrdi 2849 . . . . 5 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (𝑗𝑊𝑖)) = (𝑖𝑋 ↦ (0g‘(Scalar‘𝐴))))
512511, 308sylib 221 . . . 4 ((𝜑𝑗𝑌) → ∀𝑖𝑋 (𝑗𝑊𝑖) = (0g‘(Scalar‘𝐴)))
513512ralrimiva 3149 . . 3 (𝜑 → ∀𝑗𝑌𝑖𝑋 (𝑗𝑊𝑖) = (0g‘(Scalar‘𝐴)))
514 eqidd 2799 . . . 4 ((𝑗 = 𝑘𝑖 = 𝑙) → (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐴)))
515 fvexd 6660 . . . 4 ((𝜑𝑗𝑌𝑖𝑋) → (0g‘(Scalar‘𝐴)) ∈ V)
516 fvexd 6660 . . . 4 ((𝜑𝑘𝑌𝑙𝑋) → (0g‘(Scalar‘𝐴)) ∈ V)
517157, 514, 515, 516fnmpoovd 7765 . . 3 (𝜑 → (𝑊 = (𝑘𝑌, 𝑙𝑋 ↦ (0g‘(Scalar‘𝐴))) ↔ ∀𝑗𝑌𝑖𝑋 (𝑗𝑊𝑖) = (0g‘(Scalar‘𝐴))))
518513, 517mpbird 260 . 2 (𝜑𝑊 = (𝑘𝑌, 𝑙𝑋 ↦ (0g‘(Scalar‘𝐴))))
519 fconstmpo 7248 . 2 ((𝑌 × 𝑋) × {(0g‘(Scalar‘𝐴))}) = (𝑘𝑌, 𝑙𝑋 ↦ (0g‘(Scalar‘𝐴)))
520518, 519eqtr4di 2851 1 (𝜑𝑊 = ((𝑌 × 𝑋) × {(0g‘(Scalar‘𝐴))}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  cdif 3878  wss 3881  {csn 4525  cop 4531   class class class wbr 5030  cmpt 5110   × cxp 5517  dom cdm 5519  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  f cof 7387   supp csupp 7813  m cmap 8389  Fincfn 8492   finSupp cfsupp 8817  Basecbs 16475  s cress 16476  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17903  Grpcgrp 18095  SubGrpcsubg 18265  CMndccmn 18898  Abelcabl 18899  Ringcrg 19290  DivRingcdr 19495  SubRingcsubrg 19524  LModclmod 19627  LSubSpclss 19696  LBasisclbs 19839  LVecclvec 19867  subringAlg csra 19933   freeLMod cfrlm 20435  LIndSclinds 20494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-drng 19497  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lmhm 19787  df-lbs 19840  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-nzr 20024  df-dsmm 20421  df-frlm 20436  df-uvc 20472  df-lindf 20495  df-linds 20496
This theorem is referenced by:  fedgmul  31115
  Copyright terms: Public domain W3C validator