| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con3dimp | Structured version Visualization version GIF version | ||
| Description: Variant of con3d 152 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| con3dimp.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con3dimp | ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3dimp.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: stoic1a 1773 nelneq 2855 nelneq2 2856 nelss 4000 dtruALT2 5308 sofld 6134 card2inf 9441 elirrv 9483 gchen1 10513 gchen2 10514 bcpasc 14225 fiinfnf1o 14254 hashfn 14279 swrdnd2 14560 swrdccat 14639 nnoddn2prmb 16722 pcprod 16804 lubval 18257 glbval 18270 orngsqr 20779 mplmonmul 21969 regr1lem 23652 blcld 24418 stdbdxmet 24428 itgss 25738 isosctrlem2 26754 isppw2 27050 dchrelbas3 27174 lgsdir 27268 2lgslem2 27331 2lgs 27343 rplogsum 27463 nb3grprlem2 29357 qqhval2lem 33989 qqhf 33994 esumpinfval 34081 spthcycl 35161 lindsenlbs 37654 poimirlem24 37683 isfldidl 38107 lssat 39054 paddasslem1 39858 lcfrlem21 41601 hdmap10lem 41877 hdmap11lem2 41880 fsuppssind 42625 jm2.23 43028 ntrneiel2 44118 ntrneik4w 44132 cncfiooicclem1 45930 fourierdlem81 46224 |
| Copyright terms: Public domain | W3C validator |