Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con3dimp | Structured version Visualization version GIF version |
Description: Variant of con3d 152 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
con3dimp.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3dimp | ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3dimp.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | imp 407 | 1 ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: stoic1a 1775 nelneq 2863 nelneq2 2864 nelss 3984 dtruALT2 5293 dtru 5359 sofld 6090 2f1fvneq 7133 card2inf 9314 gchen1 10381 gchen2 10382 bcpasc 14035 fiinfnf1o 14064 hashfn 14090 swrdnd2 14368 swrdccat 14448 nnoddn2prmb 16514 pcprod 16596 lubval 18074 glbval 18087 mplmonmul 21237 regr1lem 22890 blcld 23661 stdbdxmet 23671 itgss 24976 isosctrlem2 25969 isppw2 26264 dchrelbas3 26386 lgsdir 26480 2lgslem2 26543 2lgs 26555 rplogsum 26675 nb3grprlem2 27748 orngsqr 31503 qqhval2lem 31931 qqhf 31936 esumpinfval 32041 spthcycl 33091 bj-dtru 34999 lindsenlbs 35772 poimirlem24 35801 isfldidl 36226 lssat 37030 paddasslem1 37834 lcfrlem21 39577 hdmap10lem 39853 hdmap11lem2 39856 fsuppssind 40282 jm2.23 40818 ntrneiel2 41696 ntrneik4w 41710 cncfiooicclem1 43434 fourierdlem81 43728 |
Copyright terms: Public domain | W3C validator |