| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con3dimp | Structured version Visualization version GIF version | ||
| Description: Variant of con3d 152 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| con3dimp.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con3dimp | ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3dimp.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: stoic1a 1772 nelneq 2852 nelneq2 2853 nelss 4003 dtruALT2 5312 dtruOLD 5388 sofld 6140 card2inf 9466 elirrv 9508 gchen1 10538 gchen2 10539 bcpasc 14246 fiinfnf1o 14275 hashfn 14300 swrdnd2 14580 swrdccat 14659 nnoddn2prmb 16743 pcprod 16825 lubval 18278 glbval 18291 orngsqr 20769 mplmonmul 21959 regr1lem 23642 blcld 24409 stdbdxmet 24419 itgss 25729 isosctrlem2 26745 isppw2 27041 dchrelbas3 27165 lgsdir 27259 2lgslem2 27322 2lgs 27334 rplogsum 27454 nb3grprlem2 29344 qqhval2lem 33947 qqhf 33952 esumpinfval 34039 spthcycl 35101 lindsenlbs 37594 poimirlem24 37623 isfldidl 38047 lssat 38994 paddasslem1 39799 lcfrlem21 41542 hdmap10lem 41818 hdmap11lem2 41821 fsuppssind 42566 jm2.23 42969 ntrneiel2 44059 ntrneik4w 44073 cncfiooicclem1 45875 fourierdlem81 46169 |
| Copyright terms: Public domain | W3C validator |