![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con3dimp | Structured version Visualization version GIF version |
Description: Variant of con3d 152 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
con3dimp.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3dimp | ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3dimp.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: stoic1a 1770 nelneq 2868 nelneq2 2869 nelss 4074 dtruALT2 5388 dtruOLD 5461 sofld 6218 2f1fvneq 7297 card2inf 9624 gchen1 10694 gchen2 10695 bcpasc 14370 fiinfnf1o 14399 hashfn 14424 swrdnd2 14703 swrdccat 14783 nnoddn2prmb 16860 pcprod 16942 lubval 18426 glbval 18439 mplmonmul 22077 regr1lem 23768 blcld 24539 stdbdxmet 24549 itgss 25867 isosctrlem2 26880 isppw2 27176 dchrelbas3 27300 lgsdir 27394 2lgslem2 27457 2lgs 27469 rplogsum 27589 nb3grprlem2 29416 orngsqr 33299 qqhval2lem 33927 qqhf 33932 esumpinfval 34037 spthcycl 35097 lindsenlbs 37575 poimirlem24 37604 isfldidl 38028 lssat 38972 paddasslem1 39777 lcfrlem21 41520 hdmap10lem 41796 hdmap11lem2 41799 fsuppssind 42548 jm2.23 42953 ntrneiel2 44048 ntrneik4w 44062 cncfiooicclem1 45814 fourierdlem81 46108 |
Copyright terms: Public domain | W3C validator |