Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con3dimp | Structured version Visualization version GIF version |
Description: Variant of con3d 152 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
con3dimp.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3dimp | ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3dimp.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: stoic1a 1776 nelneq 2863 nelneq2 2864 nelss 3980 dtru 5288 sofld 6079 2f1fvneq 7114 card2inf 9244 gchen1 10312 gchen2 10313 bcpasc 13963 fiinfnf1o 13992 hashfn 14018 swrdnd2 14296 swrdccat 14376 nnoddn2prmb 16442 pcprod 16524 lubval 17989 glbval 18002 mplmonmul 21147 regr1lem 22798 blcld 23567 stdbdxmet 23577 itgss 24881 isosctrlem2 25874 isppw2 26169 dchrelbas3 26291 lgsdir 26385 2lgslem2 26448 2lgs 26460 rplogsum 26580 nb3grprlem2 27651 orngsqr 31405 qqhval2lem 31831 qqhf 31836 esumpinfval 31941 spthcycl 32991 bj-dtru 34926 lindsenlbs 35699 poimirlem24 35728 isfldidl 36153 lssat 36957 paddasslem1 37761 lcfrlem21 39504 hdmap10lem 39780 hdmap11lem2 39783 fsuppssind 40205 jm2.23 40734 ntrneiel2 41585 ntrneik4w 41599 cncfiooicclem1 43324 fourierdlem81 43618 |
Copyright terms: Public domain | W3C validator |