| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con3dimp | Structured version Visualization version GIF version | ||
| Description: Variant of con3d 152 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| con3dimp.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con3dimp | ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3dimp.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: stoic1a 1772 nelneq 2858 nelneq2 2859 nelss 4024 dtruALT2 5340 dtruOLD 5416 sofld 6176 card2inf 9569 gchen1 10639 gchen2 10640 bcpasc 14339 fiinfnf1o 14368 hashfn 14393 swrdnd2 14673 swrdccat 14753 nnoddn2prmb 16833 pcprod 16915 lubval 18366 glbval 18379 mplmonmul 21994 regr1lem 23677 blcld 24444 stdbdxmet 24454 itgss 25765 isosctrlem2 26781 isppw2 27077 dchrelbas3 27201 lgsdir 27295 2lgslem2 27358 2lgs 27370 rplogsum 27490 nb3grprlem2 29360 orngsqr 33326 qqhval2lem 34012 qqhf 34017 esumpinfval 34104 spthcycl 35151 lindsenlbs 37639 poimirlem24 37668 isfldidl 38092 lssat 39034 paddasslem1 39839 lcfrlem21 41582 hdmap10lem 41858 hdmap11lem2 41861 fsuppssind 42616 jm2.23 43020 ntrneiel2 44110 ntrneik4w 44124 cncfiooicclem1 45922 fourierdlem81 46216 |
| Copyright terms: Public domain | W3C validator |