![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con3dimp | Structured version Visualization version GIF version |
Description: Variant of con3d 152 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
con3dimp.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3dimp | ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3dimp.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: stoic1a 1768 nelneq 2862 nelneq2 2863 nelss 4060 dtruALT2 5375 dtruOLD 5451 sofld 6208 2f1fvneq 7279 card2inf 9592 gchen1 10662 gchen2 10663 bcpasc 14356 fiinfnf1o 14385 hashfn 14410 swrdnd2 14689 swrdccat 14769 nnoddn2prmb 16846 pcprod 16928 lubval 18413 glbval 18426 mplmonmul 22071 regr1lem 23762 blcld 24533 stdbdxmet 24543 itgss 25861 isosctrlem2 26876 isppw2 27172 dchrelbas3 27296 lgsdir 27390 2lgslem2 27453 2lgs 27465 rplogsum 27585 nb3grprlem2 29412 orngsqr 33313 qqhval2lem 33943 qqhf 33948 esumpinfval 34053 spthcycl 35113 lindsenlbs 37601 poimirlem24 37630 isfldidl 38054 lssat 38997 paddasslem1 39802 lcfrlem21 41545 hdmap10lem 41821 hdmap11lem2 41824 fsuppssind 42579 jm2.23 42984 ntrneiel2 44075 ntrneik4w 44089 cncfiooicclem1 45848 fourierdlem81 46142 |
Copyright terms: Public domain | W3C validator |