| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con3dimp | Structured version Visualization version GIF version | ||
| Description: Variant of con3d 152 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| con3dimp.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con3dimp | ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3dimp.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: stoic1a 1773 nelneq 2857 nelneq2 2858 nelss 3996 dtruALT2 5310 sofld 6139 card2inf 9448 elirrv 9490 gchen1 10523 gchen2 10524 bcpasc 14230 fiinfnf1o 14259 hashfn 14284 swrdnd2 14565 swrdccat 14644 nnoddn2prmb 16727 pcprod 16809 lubval 18262 glbval 18275 orngsqr 20783 mplmonmul 21972 regr1lem 23655 blcld 24421 stdbdxmet 24431 itgss 25741 isosctrlem2 26757 isppw2 27053 dchrelbas3 27177 lgsdir 27271 2lgslem2 27334 2lgs 27346 rplogsum 27466 nb3grprlem2 29361 qqhval2lem 34015 qqhf 34020 esumpinfval 34107 spthcycl 35194 lindsenlbs 37675 poimirlem24 37704 isfldidl 38128 lssat 39135 paddasslem1 39939 lcfrlem21 41682 hdmap10lem 41958 hdmap11lem2 41961 fsuppssind 42711 jm2.23 43113 ntrneiel2 44203 ntrneik4w 44217 cncfiooicclem1 46015 fourierdlem81 46309 |
| Copyright terms: Public domain | W3C validator |