Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con3dimp | Structured version Visualization version GIF version |
Description: Variant of con3d 152 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
con3dimp.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3dimp | ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3dimp.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | imp 408 | 1 ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: stoic1a 1774 nelneq 2862 nelneq2 2863 nelss 3999 dtruALT2 5318 dtruOLD 5391 sofld 6130 2f1fvneq 7194 card2inf 9417 gchen1 10487 gchen2 10488 bcpasc 14141 fiinfnf1o 14170 hashfn 14195 swrdnd2 14467 swrdccat 14547 nnoddn2prmb 16612 pcprod 16694 lubval 18172 glbval 18185 mplmonmul 21343 regr1lem 22996 blcld 23767 stdbdxmet 23777 itgss 25082 isosctrlem2 26075 isppw2 26370 dchrelbas3 26492 lgsdir 26586 2lgslem2 26649 2lgs 26661 rplogsum 26781 nb3grprlem2 28037 orngsqr 31801 qqhval2lem 32227 qqhf 32232 esumpinfval 32337 spthcycl 33388 lindsenlbs 35926 poimirlem24 35955 isfldidl 36380 lssat 37332 paddasslem1 38137 lcfrlem21 39880 hdmap10lem 40156 hdmap11lem2 40159 fsuppssind 40591 jm2.23 41130 ntrneiel2 42067 ntrneik4w 42081 cncfiooicclem1 43820 fourierdlem81 44114 |
Copyright terms: Public domain | W3C validator |