| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con3dimp | Structured version Visualization version GIF version | ||
| Description: Variant of con3d 152 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| con3dimp.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con3dimp | ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3dimp.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: stoic1a 1772 nelneq 2853 nelneq2 2854 nelss 4014 dtruALT2 5327 dtruOLD 5403 sofld 6162 card2inf 9514 gchen1 10584 gchen2 10585 bcpasc 14292 fiinfnf1o 14321 hashfn 14346 swrdnd2 14626 swrdccat 14706 nnoddn2prmb 16790 pcprod 16872 lubval 18321 glbval 18334 mplmonmul 21949 regr1lem 23632 blcld 24399 stdbdxmet 24409 itgss 25719 isosctrlem2 26735 isppw2 27031 dchrelbas3 27155 lgsdir 27249 2lgslem2 27312 2lgs 27324 rplogsum 27444 nb3grprlem2 29314 orngsqr 33288 qqhval2lem 33977 qqhf 33982 esumpinfval 34069 spthcycl 35116 lindsenlbs 37604 poimirlem24 37633 isfldidl 38057 lssat 39004 paddasslem1 39809 lcfrlem21 41552 hdmap10lem 41828 hdmap11lem2 41831 fsuppssind 42574 jm2.23 42978 ntrneiel2 44068 ntrneik4w 44082 cncfiooicclem1 45884 fourierdlem81 46178 |
| Copyright terms: Public domain | W3C validator |