| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con3dimp | Structured version Visualization version GIF version | ||
| Description: Variant of con3d 152 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| con3dimp.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con3dimp | ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3dimp.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: stoic1a 1772 nelneq 2852 nelneq2 2853 nelss 4012 dtruALT2 5325 dtruOLD 5401 sofld 6160 card2inf 9508 gchen1 10578 gchen2 10579 bcpasc 14286 fiinfnf1o 14315 hashfn 14340 swrdnd2 14620 swrdccat 14700 nnoddn2prmb 16784 pcprod 16866 lubval 18315 glbval 18328 mplmonmul 21943 regr1lem 23626 blcld 24393 stdbdxmet 24403 itgss 25713 isosctrlem2 26729 isppw2 27025 dchrelbas3 27149 lgsdir 27243 2lgslem2 27306 2lgs 27318 rplogsum 27438 nb3grprlem2 29308 orngsqr 33282 qqhval2lem 33971 qqhf 33976 esumpinfval 34063 spthcycl 35116 lindsenlbs 37609 poimirlem24 37638 isfldidl 38062 lssat 39009 paddasslem1 39814 lcfrlem21 41557 hdmap10lem 41833 hdmap11lem2 41836 fsuppssind 42581 jm2.23 42985 ntrneiel2 44075 ntrneik4w 44089 cncfiooicclem1 45891 fourierdlem81 46185 |
| Copyright terms: Public domain | W3C validator |