Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnexinj Structured version   Visualization version   GIF version

Theorem hashnexinj 42129
Description: If the number of elements of the domain are greater than the number of elements in a codomain, then there are two different values that map to the same. (Contributed by metakunt, 2-May-2025.)
Hypotheses
Ref Expression
hashnexinj.1 (𝜑𝐴 ∈ Fin)
hashnexinj.2 (𝜑𝐵 ∈ Fin)
hashnexinj.3 (𝜑 → (♯‘𝐵) < (♯‘𝐴))
hashnexinj.4 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
hashnexinj (𝜑 → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem hashnexinj
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hashnexinj.4 . . 3 (𝜑𝐹:𝐴𝐵)
2 hashnexinj.3 . . . . . . . . 9 (𝜑 → (♯‘𝐵) < (♯‘𝐴))
3 hashnexinj.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ Fin)
4 hashcl 14395 . . . . . . . . . . . 12 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
53, 4syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐵) ∈ ℕ0)
65nn0red 12588 . . . . . . . . . 10 (𝜑 → (♯‘𝐵) ∈ ℝ)
7 hashnexinj.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ Fin)
8 hashcl 14395 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
97, 8syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐴) ∈ ℕ0)
109nn0red 12588 . . . . . . . . . 10 (𝜑 → (♯‘𝐴) ∈ ℝ)
116, 10ltnled 11408 . . . . . . . . 9 (𝜑 → ((♯‘𝐵) < (♯‘𝐴) ↔ ¬ (♯‘𝐴) ≤ (♯‘𝐵)))
122, 11mpbid 232 . . . . . . . 8 (𝜑 → ¬ (♯‘𝐴) ≤ (♯‘𝐵))
13 hashdom 14418 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
147, 3, 13syl2anc 584 . . . . . . . . . 10 (𝜑 → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
1514notbid 318 . . . . . . . . 9 (𝜑 → (¬ (♯‘𝐴) ≤ (♯‘𝐵) ↔ ¬ 𝐴𝐵))
1615biimpd 229 . . . . . . . 8 (𝜑 → (¬ (♯‘𝐴) ≤ (♯‘𝐵) → ¬ 𝐴𝐵))
1712, 16mpd 15 . . . . . . 7 (𝜑 → ¬ 𝐴𝐵)
18 brdomg 8997 . . . . . . . . . 10 (𝐵 ∈ Fin → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
1918notbid 318 . . . . . . . . 9 (𝐵 ∈ Fin → (¬ 𝐴𝐵 ↔ ¬ ∃𝑓 𝑓:𝐴1-1𝐵))
2019biimpd 229 . . . . . . . 8 (𝐵 ∈ Fin → (¬ 𝐴𝐵 → ¬ ∃𝑓 𝑓:𝐴1-1𝐵))
213, 20syl 17 . . . . . . 7 (𝜑 → (¬ 𝐴𝐵 → ¬ ∃𝑓 𝑓:𝐴1-1𝐵))
2217, 21mpd 15 . . . . . 6 (𝜑 → ¬ ∃𝑓 𝑓:𝐴1-1𝐵)
23 alnex 1781 . . . . . 6 (∀𝑓 ¬ 𝑓:𝐴1-1𝐵 ↔ ¬ ∃𝑓 𝑓:𝐴1-1𝐵)
2422, 23sylibr 234 . . . . 5 (𝜑 → ∀𝑓 ¬ 𝑓:𝐴1-1𝐵)
253, 7, 1elmapdd 8881 . . . . . 6 (𝜑𝐹 ∈ (𝐵m 𝐴))
26 f1eq1 6799 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓:𝐴1-1𝐵𝐹:𝐴1-1𝐵))
2726notbid 318 . . . . . . 7 (𝑓 = 𝐹 → (¬ 𝑓:𝐴1-1𝐵 ↔ ¬ 𝐹:𝐴1-1𝐵))
2827spcgv 3596 . . . . . 6 (𝐹 ∈ (𝐵m 𝐴) → (∀𝑓 ¬ 𝑓:𝐴1-1𝐵 → ¬ 𝐹:𝐴1-1𝐵))
2925, 28syl 17 . . . . 5 (𝜑 → (∀𝑓 ¬ 𝑓:𝐴1-1𝐵 → ¬ 𝐹:𝐴1-1𝐵))
3024, 29mpd 15 . . . 4 (𝜑 → ¬ 𝐹:𝐴1-1𝐵)
31 dff13 7275 . . . . . . . 8 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
32 iman 401 . . . . . . . . . . . 12 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹𝑥) = (𝐹𝑦) ∧ ¬ 𝑥 = 𝑦))
33 df-ne 2941 . . . . . . . . . . . . 13 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
3433anbi2i 623 . . . . . . . . . . . 12 (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) ∧ ¬ 𝑥 = 𝑦))
3532, 34xchbinxr 335 . . . . . . . . . . 11 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
36352ralbii 3128 . . . . . . . . . 10 (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 ¬ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
37 ralnex2 3133 . . . . . . . . . 10 (∀𝑥𝐴𝑦𝐴 ¬ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) ↔ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
3836, 37bitri 275 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
3938anbi2i 623 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)))
4031, 39bitri 275 . . . . . . 7 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)))
4140a1i 11 . . . . . 6 (𝜑 → (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))))
4241notbid 318 . . . . 5 (𝜑 → (¬ 𝐹:𝐴1-1𝐵 ↔ ¬ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))))
4342biimpd 229 . . . 4 (𝜑 → (¬ 𝐹:𝐴1-1𝐵 → ¬ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))))
4430, 43mpd 15 . . 3 (𝜑 → ¬ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)))
451, 44mpnanrd 409 . 2 (𝜑 → ¬ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
4645notnotrd 133 1 (𝜑 → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  wrex 3070   class class class wbr 5143  wf 6557  1-1wf1 6558  cfv 6561  (class class class)co 7431  m cmap 8866  cdom 8983  Fincfn 8985   < clt 11295  cle 11296  0cn0 12526  chash 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370
This theorem is referenced by:  hashnexinjle  42130
  Copyright terms: Public domain W3C validator