Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnexinj Structured version   Visualization version   GIF version

Theorem hashnexinj 41631
Description: If the number of elements of the domain are greater than the number of elements in a codomain, then there are two different values that map to the same. (Contributed by metakunt, 2-May-2025.)
Hypotheses
Ref Expression
hashnexinj.1 (𝜑𝐴 ∈ Fin)
hashnexinj.2 (𝜑𝐵 ∈ Fin)
hashnexinj.3 (𝜑 → (♯‘𝐵) < (♯‘𝐴))
hashnexinj.4 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
hashnexinj (𝜑 → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem hashnexinj
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hashnexinj.4 . . 3 (𝜑𝐹:𝐴𝐵)
2 hashnexinj.3 . . . . . . . . 9 (𝜑 → (♯‘𝐵) < (♯‘𝐴))
3 hashnexinj.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ Fin)
4 hashcl 14355 . . . . . . . . . . . 12 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
53, 4syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐵) ∈ ℕ0)
65nn0red 12571 . . . . . . . . . 10 (𝜑 → (♯‘𝐵) ∈ ℝ)
7 hashnexinj.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ Fin)
8 hashcl 14355 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
97, 8syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐴) ∈ ℕ0)
109nn0red 12571 . . . . . . . . . 10 (𝜑 → (♯‘𝐴) ∈ ℝ)
116, 10ltnled 11399 . . . . . . . . 9 (𝜑 → ((♯‘𝐵) < (♯‘𝐴) ↔ ¬ (♯‘𝐴) ≤ (♯‘𝐵)))
122, 11mpbid 231 . . . . . . . 8 (𝜑 → ¬ (♯‘𝐴) ≤ (♯‘𝐵))
13 hashdom 14378 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
147, 3, 13syl2anc 582 . . . . . . . . . 10 (𝜑 → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
1514notbid 317 . . . . . . . . 9 (𝜑 → (¬ (♯‘𝐴) ≤ (♯‘𝐵) ↔ ¬ 𝐴𝐵))
1615biimpd 228 . . . . . . . 8 (𝜑 → (¬ (♯‘𝐴) ≤ (♯‘𝐵) → ¬ 𝐴𝐵))
1712, 16mpd 15 . . . . . . 7 (𝜑 → ¬ 𝐴𝐵)
18 brdomg 8983 . . . . . . . . . 10 (𝐵 ∈ Fin → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
1918notbid 317 . . . . . . . . 9 (𝐵 ∈ Fin → (¬ 𝐴𝐵 ↔ ¬ ∃𝑓 𝑓:𝐴1-1𝐵))
2019biimpd 228 . . . . . . . 8 (𝐵 ∈ Fin → (¬ 𝐴𝐵 → ¬ ∃𝑓 𝑓:𝐴1-1𝐵))
213, 20syl 17 . . . . . . 7 (𝜑 → (¬ 𝐴𝐵 → ¬ ∃𝑓 𝑓:𝐴1-1𝐵))
2217, 21mpd 15 . . . . . 6 (𝜑 → ¬ ∃𝑓 𝑓:𝐴1-1𝐵)
23 alnex 1775 . . . . . 6 (∀𝑓 ¬ 𝑓:𝐴1-1𝐵 ↔ ¬ ∃𝑓 𝑓:𝐴1-1𝐵)
2422, 23sylibr 233 . . . . 5 (𝜑 → ∀𝑓 ¬ 𝑓:𝐴1-1𝐵)
253, 7, 1elmapdd 8866 . . . . . 6 (𝜑𝐹 ∈ (𝐵m 𝐴))
26 f1eq1 6793 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓:𝐴1-1𝐵𝐹:𝐴1-1𝐵))
2726notbid 317 . . . . . . 7 (𝑓 = 𝐹 → (¬ 𝑓:𝐴1-1𝐵 ↔ ¬ 𝐹:𝐴1-1𝐵))
2827spcgv 3585 . . . . . 6 (𝐹 ∈ (𝐵m 𝐴) → (∀𝑓 ¬ 𝑓:𝐴1-1𝐵 → ¬ 𝐹:𝐴1-1𝐵))
2925, 28syl 17 . . . . 5 (𝜑 → (∀𝑓 ¬ 𝑓:𝐴1-1𝐵 → ¬ 𝐹:𝐴1-1𝐵))
3024, 29mpd 15 . . . 4 (𝜑 → ¬ 𝐹:𝐴1-1𝐵)
31 dff13 7271 . . . . . . . 8 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
32 iman 400 . . . . . . . . . . . 12 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹𝑥) = (𝐹𝑦) ∧ ¬ 𝑥 = 𝑦))
33 df-ne 2938 . . . . . . . . . . . . 13 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
3433anbi2i 621 . . . . . . . . . . . 12 (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) ∧ ¬ 𝑥 = 𝑦))
3532, 34xchbinxr 334 . . . . . . . . . . 11 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
36352ralbii 3125 . . . . . . . . . 10 (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 ¬ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
37 ralnex2 3130 . . . . . . . . . 10 (∀𝑥𝐴𝑦𝐴 ¬ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) ↔ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
3836, 37bitri 274 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
3938anbi2i 621 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)))
4031, 39bitri 274 . . . . . . 7 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)))
4140a1i 11 . . . . . 6 (𝜑 → (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))))
4241notbid 317 . . . . 5 (𝜑 → (¬ 𝐹:𝐴1-1𝐵 ↔ ¬ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))))
4342biimpd 228 . . . 4 (𝜑 → (¬ 𝐹:𝐴1-1𝐵 → ¬ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))))
4430, 43mpd 15 . . 3 (𝜑 → ¬ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)))
451, 44mpnanrd 408 . 2 (𝜑 → ¬ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
4645notnotrd 133 1 (𝜑 → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wal 1531   = wceq 1533  wex 1773  wcel 2098  wne 2937  wral 3058  wrex 3067   class class class wbr 5152  wf 6549  1-1wf1 6550  cfv 6553  (class class class)co 7426  m cmap 8851  cdom 8968  Fincfn 8970   < clt 11286  cle 11287  0cn0 12510  chash 14329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-oadd 8497  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-fz 13525  df-hash 14330
This theorem is referenced by:  hashnexinjle  41632
  Copyright terms: Public domain W3C validator