Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnexinj Structured version   Visualization version   GIF version

Theorem hashnexinj 42141
Description: If the number of elements of the domain are greater than the number of elements in a codomain, then there are two different values that map to the same. (Contributed by metakunt, 2-May-2025.)
Hypotheses
Ref Expression
hashnexinj.1 (𝜑𝐴 ∈ Fin)
hashnexinj.2 (𝜑𝐵 ∈ Fin)
hashnexinj.3 (𝜑 → (♯‘𝐵) < (♯‘𝐴))
hashnexinj.4 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
hashnexinj (𝜑 → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem hashnexinj
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hashnexinj.4 . . 3 (𝜑𝐹:𝐴𝐵)
2 hashnexinj.3 . . . . . . . . 9 (𝜑 → (♯‘𝐵) < (♯‘𝐴))
3 hashnexinj.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ Fin)
4 hashcl 14374 . . . . . . . . . . . 12 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
53, 4syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐵) ∈ ℕ0)
65nn0red 12563 . . . . . . . . . 10 (𝜑 → (♯‘𝐵) ∈ ℝ)
7 hashnexinj.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ Fin)
8 hashcl 14374 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
97, 8syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐴) ∈ ℕ0)
109nn0red 12563 . . . . . . . . . 10 (𝜑 → (♯‘𝐴) ∈ ℝ)
116, 10ltnled 11382 . . . . . . . . 9 (𝜑 → ((♯‘𝐵) < (♯‘𝐴) ↔ ¬ (♯‘𝐴) ≤ (♯‘𝐵)))
122, 11mpbid 232 . . . . . . . 8 (𝜑 → ¬ (♯‘𝐴) ≤ (♯‘𝐵))
13 hashdom 14397 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
147, 3, 13syl2anc 584 . . . . . . . . . 10 (𝜑 → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
1514notbid 318 . . . . . . . . 9 (𝜑 → (¬ (♯‘𝐴) ≤ (♯‘𝐵) ↔ ¬ 𝐴𝐵))
1615biimpd 229 . . . . . . . 8 (𝜑 → (¬ (♯‘𝐴) ≤ (♯‘𝐵) → ¬ 𝐴𝐵))
1712, 16mpd 15 . . . . . . 7 (𝜑 → ¬ 𝐴𝐵)
18 brdomg 8971 . . . . . . . . . 10 (𝐵 ∈ Fin → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
1918notbid 318 . . . . . . . . 9 (𝐵 ∈ Fin → (¬ 𝐴𝐵 ↔ ¬ ∃𝑓 𝑓:𝐴1-1𝐵))
2019biimpd 229 . . . . . . . 8 (𝐵 ∈ Fin → (¬ 𝐴𝐵 → ¬ ∃𝑓 𝑓:𝐴1-1𝐵))
213, 20syl 17 . . . . . . 7 (𝜑 → (¬ 𝐴𝐵 → ¬ ∃𝑓 𝑓:𝐴1-1𝐵))
2217, 21mpd 15 . . . . . 6 (𝜑 → ¬ ∃𝑓 𝑓:𝐴1-1𝐵)
23 alnex 1781 . . . . . 6 (∀𝑓 ¬ 𝑓:𝐴1-1𝐵 ↔ ¬ ∃𝑓 𝑓:𝐴1-1𝐵)
2422, 23sylibr 234 . . . . 5 (𝜑 → ∀𝑓 ¬ 𝑓:𝐴1-1𝐵)
253, 7, 1elmapdd 8855 . . . . . 6 (𝜑𝐹 ∈ (𝐵m 𝐴))
26 f1eq1 6769 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓:𝐴1-1𝐵𝐹:𝐴1-1𝐵))
2726notbid 318 . . . . . . 7 (𝑓 = 𝐹 → (¬ 𝑓:𝐴1-1𝐵 ↔ ¬ 𝐹:𝐴1-1𝐵))
2827spcgv 3575 . . . . . 6 (𝐹 ∈ (𝐵m 𝐴) → (∀𝑓 ¬ 𝑓:𝐴1-1𝐵 → ¬ 𝐹:𝐴1-1𝐵))
2925, 28syl 17 . . . . 5 (𝜑 → (∀𝑓 ¬ 𝑓:𝐴1-1𝐵 → ¬ 𝐹:𝐴1-1𝐵))
3024, 29mpd 15 . . . 4 (𝜑 → ¬ 𝐹:𝐴1-1𝐵)
31 dff13 7247 . . . . . . . 8 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
32 iman 401 . . . . . . . . . . . 12 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹𝑥) = (𝐹𝑦) ∧ ¬ 𝑥 = 𝑦))
33 df-ne 2933 . . . . . . . . . . . . 13 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
3433anbi2i 623 . . . . . . . . . . . 12 (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) ∧ ¬ 𝑥 = 𝑦))
3532, 34xchbinxr 335 . . . . . . . . . . 11 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
36352ralbii 3115 . . . . . . . . . 10 (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 ¬ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
37 ralnex2 3120 . . . . . . . . . 10 (∀𝑥𝐴𝑦𝐴 ¬ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) ↔ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
3836, 37bitri 275 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
3938anbi2i 623 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)))
4031, 39bitri 275 . . . . . . 7 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)))
4140a1i 11 . . . . . 6 (𝜑 → (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))))
4241notbid 318 . . . . 5 (𝜑 → (¬ 𝐹:𝐴1-1𝐵 ↔ ¬ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))))
4342biimpd 229 . . . 4 (𝜑 → (¬ 𝐹:𝐴1-1𝐵 → ¬ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))))
4430, 43mpd 15 . . 3 (𝜑 → ¬ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)))
451, 44mpnanrd 409 . 2 (𝜑 → ¬ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
4645notnotrd 133 1 (𝜑 → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  wrex 3060   class class class wbr 5119  wf 6527  1-1wf1 6528  cfv 6531  (class class class)co 7405  m cmap 8840  cdom 8957  Fincfn 8959   < clt 11269  cle 11270  0cn0 12501  chash 14348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349
This theorem is referenced by:  hashnexinjle  42142
  Copyright terms: Public domain W3C validator