Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucuni3 | Structured version Visualization version GIF version |
Description: If an ordinal number has a predecessor, then it is successor of that predecessor. (Contributed by ML, 17-Oct-2020.) |
Ref | Expression |
---|---|
onsucuni3 | ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6185 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
2 | 1 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → Ord 𝐵) |
3 | orduniorsuc 7551 | . . . 4 ⊢ (Ord 𝐵 → (𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵)) |
5 | 4 | orcomd 868 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = suc ∪ 𝐵 ∨ 𝐵 = ∪ 𝐵)) |
6 | simp2 1135 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 ≠ ∅) | |
7 | df-lim 6180 | . . . . . . . 8 ⊢ (Lim 𝐵 ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) | |
8 | 7 | biimpri 231 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵) → Lim 𝐵) |
9 | 8 | 3expb 1118 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) → Lim 𝐵) |
10 | 9 | con3i 157 | . . . . 5 ⊢ (¬ Lim 𝐵 → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
11 | 10 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
12 | 2, 11 | mpnanrd 413 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) |
13 | 6, 12 | mpnanrd 413 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ 𝐵 = ∪ 𝐵) |
14 | orcom 867 | . . 3 ⊢ ((𝐵 = suc ∪ 𝐵 ∨ 𝐵 = ∪ 𝐵) ↔ (𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵)) | |
15 | df-or 845 | . . 3 ⊢ ((𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵) ↔ (¬ 𝐵 = ∪ 𝐵 → 𝐵 = suc ∪ 𝐵)) | |
16 | 14, 15 | sylbb 222 | . 2 ⊢ ((𝐵 = suc ∪ 𝐵 ∨ 𝐵 = ∪ 𝐵) → (¬ 𝐵 = ∪ 𝐵 → 𝐵 = suc ∪ 𝐵)) |
17 | 5, 13, 16 | sylc 65 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∨ wo 844 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∅c0 4228 ∪ cuni 4802 Ord word 6174 Oncon0 6175 Lim wlim 6176 suc csuc 6177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pr 5303 ax-un 7466 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3700 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-tr 5144 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 |
This theorem is referenced by: 1oequni2o 35101 rdgsucuni 35102 finxpreclem4 35127 |
Copyright terms: Public domain | W3C validator |