| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucuni3 | Structured version Visualization version GIF version | ||
| Description: If an ordinal number has a predecessor, then it is successor of that predecessor. (Contributed by ML, 17-Oct-2020.) |
| Ref | Expression |
|---|---|
| onsucuni3 | ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6394 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 2 | 1 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → Ord 𝐵) |
| 3 | orduniorsuc 7850 | . . . 4 ⊢ (Ord 𝐵 → (𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵)) |
| 5 | 4 | orcomd 872 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = suc ∪ 𝐵 ∨ 𝐵 = ∪ 𝐵)) |
| 6 | simp2 1138 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 ≠ ∅) | |
| 7 | df-lim 6389 | . . . . . . . 8 ⊢ (Lim 𝐵 ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) | |
| 8 | 7 | biimpri 228 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵) → Lim 𝐵) |
| 9 | 8 | 3expb 1121 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) → Lim 𝐵) |
| 10 | 9 | con3i 154 | . . . . 5 ⊢ (¬ Lim 𝐵 → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
| 11 | 10 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
| 12 | 2, 11 | mpnanrd 409 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) |
| 13 | 6, 12 | mpnanrd 409 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ 𝐵 = ∪ 𝐵) |
| 14 | orcom 871 | . . 3 ⊢ ((𝐵 = suc ∪ 𝐵 ∨ 𝐵 = ∪ 𝐵) ↔ (𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵)) | |
| 15 | df-or 849 | . . 3 ⊢ ((𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵) ↔ (¬ 𝐵 = ∪ 𝐵 → 𝐵 = suc ∪ 𝐵)) | |
| 16 | 14, 15 | sylbb 219 | . 2 ⊢ ((𝐵 = suc ∪ 𝐵 ∨ 𝐵 = ∪ 𝐵) → (¬ 𝐵 = ∪ 𝐵 → 𝐵 = suc ∪ 𝐵)) |
| 17 | 5, 13, 16 | sylc 65 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∅c0 4333 ∪ cuni 4907 Ord word 6383 Oncon0 6384 Lim wlim 6385 suc csuc 6386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 |
| This theorem is referenced by: 1oequni2o 37369 rdgsucuni 37370 finxpreclem4 37395 |
| Copyright terms: Public domain | W3C validator |