![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucuni3 | Structured version Visualization version GIF version |
Description: If an ordinal number has a predecessor, then it is successor of that predecessor. (Contributed by ML, 17-Oct-2020.) |
Ref | Expression |
---|---|
onsucuni3 | ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6395 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
2 | 1 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → Ord 𝐵) |
3 | orduniorsuc 7849 | . . . 4 ⊢ (Ord 𝐵 → (𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵)) |
5 | 4 | orcomd 871 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = suc ∪ 𝐵 ∨ 𝐵 = ∪ 𝐵)) |
6 | simp2 1136 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 ≠ ∅) | |
7 | df-lim 6390 | . . . . . . . 8 ⊢ (Lim 𝐵 ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) | |
8 | 7 | biimpri 228 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵) → Lim 𝐵) |
9 | 8 | 3expb 1119 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) → Lim 𝐵) |
10 | 9 | con3i 154 | . . . . 5 ⊢ (¬ Lim 𝐵 → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
11 | 10 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
12 | 2, 11 | mpnanrd 409 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) |
13 | 6, 12 | mpnanrd 409 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ 𝐵 = ∪ 𝐵) |
14 | orcom 870 | . . 3 ⊢ ((𝐵 = suc ∪ 𝐵 ∨ 𝐵 = ∪ 𝐵) ↔ (𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵)) | |
15 | df-or 848 | . . 3 ⊢ ((𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵) ↔ (¬ 𝐵 = ∪ 𝐵 → 𝐵 = suc ∪ 𝐵)) | |
16 | 14, 15 | sylbb 219 | . 2 ⊢ ((𝐵 = suc ∪ 𝐵 ∨ 𝐵 = ∪ 𝐵) → (¬ 𝐵 = ∪ 𝐵 → 𝐵 = suc ∪ 𝐵)) |
17 | 5, 13, 16 | sylc 65 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∅c0 4338 ∪ cuni 4911 Ord word 6384 Oncon0 6385 Lim wlim 6386 suc csuc 6387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 |
This theorem is referenced by: 1oequni2o 37350 rdgsucuni 37351 finxpreclem4 37376 |
Copyright terms: Public domain | W3C validator |