![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucuni3 | Structured version Visualization version GIF version |
Description: If an ordinal number has a predecessor, then it is successor of that predecessor. (Contributed by ML, 17-Oct-2020.) |
Ref | Expression |
---|---|
onsucuni3 | ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6371 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
2 | 1 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → Ord 𝐵) |
3 | orduniorsuc 7814 | . . . 4 ⊢ (Ord 𝐵 → (𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵)) |
5 | 4 | orcomd 869 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = suc ∪ 𝐵 ∨ 𝐵 = ∪ 𝐵)) |
6 | simp2 1137 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 ≠ ∅) | |
7 | df-lim 6366 | . . . . . . . 8 ⊢ (Lim 𝐵 ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) | |
8 | 7 | biimpri 227 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵) → Lim 𝐵) |
9 | 8 | 3expb 1120 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) → Lim 𝐵) |
10 | 9 | con3i 154 | . . . . 5 ⊢ (¬ Lim 𝐵 → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
11 | 10 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
12 | 2, 11 | mpnanrd 410 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) |
13 | 6, 12 | mpnanrd 410 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ 𝐵 = ∪ 𝐵) |
14 | orcom 868 | . . 3 ⊢ ((𝐵 = suc ∪ 𝐵 ∨ 𝐵 = ∪ 𝐵) ↔ (𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵)) | |
15 | df-or 846 | . . 3 ⊢ ((𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵) ↔ (¬ 𝐵 = ∪ 𝐵 → 𝐵 = suc ∪ 𝐵)) | |
16 | 14, 15 | sylbb 218 | . 2 ⊢ ((𝐵 = suc ∪ 𝐵 ∨ 𝐵 = ∪ 𝐵) → (¬ 𝐵 = ∪ 𝐵 → 𝐵 = suc ∪ 𝐵)) |
17 | 5, 13, 16 | sylc 65 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∅c0 4321 ∪ cuni 4907 Ord word 6360 Oncon0 6361 Lim wlim 6362 suc csuc 6363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 |
This theorem is referenced by: 1oequni2o 36237 rdgsucuni 36238 finxpreclem4 36263 |
Copyright terms: Public domain | W3C validator |