Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucuni3 Structured version   Visualization version   GIF version

Theorem onsucuni3 36903
Description: If an ordinal number has a predecessor, then it is successor of that predecessor. (Contributed by ML, 17-Oct-2020.)
Assertion
Ref Expression
onsucuni3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc 𝐵)

Proof of Theorem onsucuni3
StepHypRef Expression
1 eloni 6374 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
213ad2ant1 1130 . . . 4 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → Ord 𝐵)
3 orduniorsuc 7831 . . . 4 (Ord 𝐵 → (𝐵 = 𝐵𝐵 = suc 𝐵))
42, 3syl 17 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = 𝐵𝐵 = suc 𝐵))
54orcomd 869 . 2 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = suc 𝐵𝐵 = 𝐵))
6 simp2 1134 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 ≠ ∅)
7 df-lim 6369 . . . . . . . 8 (Lim 𝐵 ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
87biimpri 227 . . . . . . 7 ((Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵) → Lim 𝐵)
983expb 1117 . . . . . 6 ((Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)) → Lim 𝐵)
109con3i 154 . . . . 5 (¬ Lim 𝐵 → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
11103ad2ant3 1132 . . . 4 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
122, 11mpnanrd 408 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
136, 12mpnanrd 408 . 2 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ 𝐵 = 𝐵)
14 orcom 868 . . 3 ((𝐵 = suc 𝐵𝐵 = 𝐵) ↔ (𝐵 = 𝐵𝐵 = suc 𝐵))
15 df-or 846 . . 3 ((𝐵 = 𝐵𝐵 = suc 𝐵) ↔ (¬ 𝐵 = 𝐵𝐵 = suc 𝐵))
1614, 15sylbb 218 . 2 ((𝐵 = suc 𝐵𝐵 = 𝐵) → (¬ 𝐵 = 𝐵𝐵 = suc 𝐵))
175, 13, 16sylc 65 1 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2930  c0 4318   cuni 4903  Ord word 6363  Oncon0 6364  Lim wlim 6365  suc csuc 6366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-tr 5261  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370
This theorem is referenced by:  1oequni2o  36904  rdgsucuni  36905  finxpreclem4  36930
  Copyright terms: Public domain W3C validator