Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucuni3 Structured version   Visualization version   GIF version

Theorem onsucuni3 36236
Description: If an ordinal number has a predecessor, then it is successor of that predecessor. (Contributed by ML, 17-Oct-2020.)
Assertion
Ref Expression
onsucuni3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc 𝐵)

Proof of Theorem onsucuni3
StepHypRef Expression
1 eloni 6371 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
213ad2ant1 1133 . . . 4 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → Ord 𝐵)
3 orduniorsuc 7814 . . . 4 (Ord 𝐵 → (𝐵 = 𝐵𝐵 = suc 𝐵))
42, 3syl 17 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = 𝐵𝐵 = suc 𝐵))
54orcomd 869 . 2 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (𝐵 = suc 𝐵𝐵 = 𝐵))
6 simp2 1137 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 ≠ ∅)
7 df-lim 6366 . . . . . . . 8 (Lim 𝐵 ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
87biimpri 227 . . . . . . 7 ((Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵) → Lim 𝐵)
983expb 1120 . . . . . 6 ((Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)) → Lim 𝐵)
109con3i 154 . . . . 5 (¬ Lim 𝐵 → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
11103ad2ant3 1135 . . . 4 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (Ord 𝐵 ∧ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
122, 11mpnanrd 410 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ (𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
136, 12mpnanrd 410 . 2 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ¬ 𝐵 = 𝐵)
14 orcom 868 . . 3 ((𝐵 = suc 𝐵𝐵 = 𝐵) ↔ (𝐵 = 𝐵𝐵 = suc 𝐵))
15 df-or 846 . . 3 ((𝐵 = 𝐵𝐵 = suc 𝐵) ↔ (¬ 𝐵 = 𝐵𝐵 = suc 𝐵))
1614, 15sylbb 218 . 2 ((𝐵 = suc 𝐵𝐵 = 𝐵) → (¬ 𝐵 = 𝐵𝐵 = suc 𝐵))
175, 13, 16sylc 65 1 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2940  c0 4321   cuni 4907  Ord word 6360  Oncon0 6361  Lim wlim 6362  suc csuc 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367
This theorem is referenced by:  1oequni2o  36237  rdgsucuni  36238  finxpreclem4  36263
  Copyright terms: Public domain W3C validator