|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mpsylsyld | Structured version Visualization version GIF version | ||
| Description: Modus ponens combined with a double syllogism inference. (Contributed by Alan Sare, 22-Jul-2012.) | 
| Ref | Expression | 
|---|---|
| mpsylsyld.1 | ⊢ 𝜑 | 
| mpsylsyld.2 | ⊢ (𝜓 → (𝜒 → 𝜃)) | 
| mpsylsyld.3 | ⊢ (𝜑 → (𝜃 → 𝜏)) | 
| Ref | Expression | 
|---|---|
| mpsylsyld | ⊢ (𝜓 → (𝜒 → 𝜏)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpsylsyld.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜓 → 𝜑) | 
| 3 | mpsylsyld.2 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 4 | mpsylsyld.3 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 5 | 2, 3, 4 | sylsyld 61 | 1 ⊢ (𝜓 → (𝜒 → 𝜏)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 | 
| This theorem is referenced by: r1sdom 9815 r1ord3g 9820 r1ord2 9822 rlimclim 15583 vk15.4j 44553 onfrALTlem3 44569 ee02an 44724 usgrexmpl12ngric 48002 usgrexmpl12ngrlic 48003 | 
| Copyright terms: Public domain | W3C validator |