MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1sdom Structured version   Visualization version   GIF version

Theorem r1sdom 9532
Description: Each stage in the cumulative hierarchy is strictly larger than the last. (Contributed by Mario Carneiro, 19-Apr-2013.)
Assertion
Ref Expression
r1sdom ((𝐴 ∈ On ∧ 𝐵𝐴) → (𝑅1𝐵) ≺ (𝑅1𝐴))

Proof of Theorem r1sdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2827 . . . 4 (𝑥 = ∅ → (𝐵𝑥𝐵 ∈ ∅))
2 fveq2 6774 . . . . 5 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
32breq2d 5086 . . . 4 (𝑥 = ∅ → ((𝑅1𝐵) ≺ (𝑅1𝑥) ↔ (𝑅1𝐵) ≺ (𝑅1‘∅)))
41, 3imbi12d 345 . . 3 (𝑥 = ∅ → ((𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥)) ↔ (𝐵 ∈ ∅ → (𝑅1𝐵) ≺ (𝑅1‘∅))))
5 eleq2 2827 . . . 4 (𝑥 = 𝑦 → (𝐵𝑥𝐵𝑦))
6 fveq2 6774 . . . . 5 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
76breq2d 5086 . . . 4 (𝑥 = 𝑦 → ((𝑅1𝐵) ≺ (𝑅1𝑥) ↔ (𝑅1𝐵) ≺ (𝑅1𝑦)))
85, 7imbi12d 345 . . 3 (𝑥 = 𝑦 → ((𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥)) ↔ (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦))))
9 eleq2 2827 . . . 4 (𝑥 = suc 𝑦 → (𝐵𝑥𝐵 ∈ suc 𝑦))
10 fveq2 6774 . . . . 5 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
1110breq2d 5086 . . . 4 (𝑥 = suc 𝑦 → ((𝑅1𝐵) ≺ (𝑅1𝑥) ↔ (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦)))
129, 11imbi12d 345 . . 3 (𝑥 = suc 𝑦 → ((𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥)) ↔ (𝐵 ∈ suc 𝑦 → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
13 eleq2 2827 . . . 4 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
14 fveq2 6774 . . . . 5 (𝑥 = 𝐴 → (𝑅1𝑥) = (𝑅1𝐴))
1514breq2d 5086 . . . 4 (𝑥 = 𝐴 → ((𝑅1𝐵) ≺ (𝑅1𝑥) ↔ (𝑅1𝐵) ≺ (𝑅1𝐴)))
1613, 15imbi12d 345 . . 3 (𝑥 = 𝐴 → ((𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥)) ↔ (𝐵𝐴 → (𝑅1𝐵) ≺ (𝑅1𝐴))))
17 noel 4264 . . . 4 ¬ 𝐵 ∈ ∅
1817pm2.21i 119 . . 3 (𝐵 ∈ ∅ → (𝑅1𝐵) ≺ (𝑅1‘∅))
19 elsuci 6332 . . . . 5 (𝐵 ∈ suc 𝑦 → (𝐵𝑦𝐵 = 𝑦))
20 sdomtr 8902 . . . . . . . . 9 (((𝑅1𝐵) ≺ (𝑅1𝑦) ∧ (𝑅1𝑦) ≺ (𝑅1‘suc 𝑦)) → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))
2120expcom 414 . . . . . . . 8 ((𝑅1𝑦) ≺ (𝑅1‘suc 𝑦) → ((𝑅1𝐵) ≺ (𝑅1𝑦) → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦)))
22 fvex 6787 . . . . . . . . . 10 (𝑅1𝑦) ∈ V
2322canth2 8917 . . . . . . . . 9 (𝑅1𝑦) ≺ 𝒫 (𝑅1𝑦)
24 r1suc 9528 . . . . . . . . 9 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
2523, 24breqtrrid 5112 . . . . . . . 8 (𝑦 ∈ On → (𝑅1𝑦) ≺ (𝑅1‘suc 𝑦))
2621, 25syl11 33 . . . . . . 7 ((𝑅1𝐵) ≺ (𝑅1𝑦) → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦)))
2726imim2i 16 . . . . . 6 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵𝑦 → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
28 fveq2 6774 . . . . . . . . 9 (𝐵 = 𝑦 → (𝑅1𝐵) = (𝑅1𝑦))
2928breq1d 5084 . . . . . . . 8 (𝐵 = 𝑦 → ((𝑅1𝐵) ≺ (𝑅1‘suc 𝑦) ↔ (𝑅1𝑦) ≺ (𝑅1‘suc 𝑦)))
3025, 29syl5ibr 245 . . . . . . 7 (𝐵 = 𝑦 → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦)))
3130a1i 11 . . . . . 6 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵 = 𝑦 → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
3227, 31jaod 856 . . . . 5 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → ((𝐵𝑦𝐵 = 𝑦) → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
3319, 32syl5 34 . . . 4 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵 ∈ suc 𝑦 → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
3433com3r 87 . . 3 (𝑦 ∈ On → ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵 ∈ suc 𝑦 → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
35 limuni 6326 . . . . . . 7 (Lim 𝑥𝑥 = 𝑥)
3635eleq2d 2824 . . . . . 6 (Lim 𝑥 → (𝐵𝑥𝐵 𝑥))
37 eluni2 4843 . . . . . 6 (𝐵 𝑥 ↔ ∃𝑦𝑥 𝐵𝑦)
3836, 37bitrdi 287 . . . . 5 (Lim 𝑥 → (𝐵𝑥 ↔ ∃𝑦𝑥 𝐵𝑦))
39 r19.29 3184 . . . . . . 7 ((∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ ∃𝑦𝑥 𝐵𝑦) → ∃𝑦𝑥 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦))
40 fvex 6787 . . . . . . . . . 10 (𝑅1𝑥) ∈ V
41 ssiun2 4977 . . . . . . . . . . 11 (𝑦𝑥 → (𝑅1𝑦) ⊆ 𝑦𝑥 (𝑅1𝑦))
42 vex 3436 . . . . . . . . . . . . 13 𝑥 ∈ V
43 r1lim 9530 . . . . . . . . . . . . 13 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
4442, 43mpan 687 . . . . . . . . . . . 12 (Lim 𝑥 → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
4544sseq2d 3953 . . . . . . . . . . 11 (Lim 𝑥 → ((𝑅1𝑦) ⊆ (𝑅1𝑥) ↔ (𝑅1𝑦) ⊆ 𝑦𝑥 (𝑅1𝑦)))
4641, 45syl5ibr 245 . . . . . . . . . 10 (Lim 𝑥 → (𝑦𝑥 → (𝑅1𝑦) ⊆ (𝑅1𝑥)))
47 ssdomg 8786 . . . . . . . . . 10 ((𝑅1𝑥) ∈ V → ((𝑅1𝑦) ⊆ (𝑅1𝑥) → (𝑅1𝑦) ≼ (𝑅1𝑥)))
4840, 46, 47mpsylsyld 69 . . . . . . . . 9 (Lim 𝑥 → (𝑦𝑥 → (𝑅1𝑦) ≼ (𝑅1𝑥)))
49 id 22 . . . . . . . . . . 11 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)))
5049imp 407 . . . . . . . . . 10 (((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑦))
51 sdomdomtr 8897 . . . . . . . . . . 11 (((𝑅1𝐵) ≺ (𝑅1𝑦) ∧ (𝑅1𝑦) ≼ (𝑅1𝑥)) → (𝑅1𝐵) ≺ (𝑅1𝑥))
5251expcom 414 . . . . . . . . . 10 ((𝑅1𝑦) ≼ (𝑅1𝑥) → ((𝑅1𝐵) ≺ (𝑅1𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥)))
5350, 52syl5 34 . . . . . . . . 9 ((𝑅1𝑦) ≼ (𝑅1𝑥) → (((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥)))
5448, 53syl6 35 . . . . . . . 8 (Lim 𝑥 → (𝑦𝑥 → (((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥))))
5554rexlimdv 3212 . . . . . . 7 (Lim 𝑥 → (∃𝑦𝑥 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥)))
5639, 55syl5 34 . . . . . 6 (Lim 𝑥 → ((∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ ∃𝑦𝑥 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥)))
5756expcomd 417 . . . . 5 (Lim 𝑥 → (∃𝑦𝑥 𝐵𝑦 → (∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝑅1𝐵) ≺ (𝑅1𝑥))))
5838, 57sylbid 239 . . . 4 (Lim 𝑥 → (𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝑅1𝐵) ≺ (𝑅1𝑥))))
5958com23 86 . . 3 (Lim 𝑥 → (∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥))))
604, 8, 12, 16, 18, 34, 59tfinds 7706 . 2 (𝐴 ∈ On → (𝐵𝐴 → (𝑅1𝐵) ≺ (𝑅1𝐴)))
6160imp 407 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → (𝑅1𝐵) ≺ (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839   ciun 4924   class class class wbr 5074  Oncon0 6266  Lim wlim 6267  suc csuc 6268  cfv 6433  cdom 8731  csdm 8732  𝑅1cr1 9520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-r1 9522
This theorem is referenced by:  r111  9533  smobeth  10342  r1tskina  10538
  Copyright terms: Public domain W3C validator