MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1sdom Structured version   Visualization version   GIF version

Theorem r1sdom 9463
Description: Each stage in the cumulative hierarchy is strictly larger than the last. (Contributed by Mario Carneiro, 19-Apr-2013.)
Assertion
Ref Expression
r1sdom ((𝐴 ∈ On ∧ 𝐵𝐴) → (𝑅1𝐵) ≺ (𝑅1𝐴))

Proof of Theorem r1sdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2827 . . . 4 (𝑥 = ∅ → (𝐵𝑥𝐵 ∈ ∅))
2 fveq2 6756 . . . . 5 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
32breq2d 5082 . . . 4 (𝑥 = ∅ → ((𝑅1𝐵) ≺ (𝑅1𝑥) ↔ (𝑅1𝐵) ≺ (𝑅1‘∅)))
41, 3imbi12d 344 . . 3 (𝑥 = ∅ → ((𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥)) ↔ (𝐵 ∈ ∅ → (𝑅1𝐵) ≺ (𝑅1‘∅))))
5 eleq2 2827 . . . 4 (𝑥 = 𝑦 → (𝐵𝑥𝐵𝑦))
6 fveq2 6756 . . . . 5 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
76breq2d 5082 . . . 4 (𝑥 = 𝑦 → ((𝑅1𝐵) ≺ (𝑅1𝑥) ↔ (𝑅1𝐵) ≺ (𝑅1𝑦)))
85, 7imbi12d 344 . . 3 (𝑥 = 𝑦 → ((𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥)) ↔ (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦))))
9 eleq2 2827 . . . 4 (𝑥 = suc 𝑦 → (𝐵𝑥𝐵 ∈ suc 𝑦))
10 fveq2 6756 . . . . 5 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
1110breq2d 5082 . . . 4 (𝑥 = suc 𝑦 → ((𝑅1𝐵) ≺ (𝑅1𝑥) ↔ (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦)))
129, 11imbi12d 344 . . 3 (𝑥 = suc 𝑦 → ((𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥)) ↔ (𝐵 ∈ suc 𝑦 → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
13 eleq2 2827 . . . 4 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
14 fveq2 6756 . . . . 5 (𝑥 = 𝐴 → (𝑅1𝑥) = (𝑅1𝐴))
1514breq2d 5082 . . . 4 (𝑥 = 𝐴 → ((𝑅1𝐵) ≺ (𝑅1𝑥) ↔ (𝑅1𝐵) ≺ (𝑅1𝐴)))
1613, 15imbi12d 344 . . 3 (𝑥 = 𝐴 → ((𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥)) ↔ (𝐵𝐴 → (𝑅1𝐵) ≺ (𝑅1𝐴))))
17 noel 4261 . . . 4 ¬ 𝐵 ∈ ∅
1817pm2.21i 119 . . 3 (𝐵 ∈ ∅ → (𝑅1𝐵) ≺ (𝑅1‘∅))
19 elsuci 6317 . . . . 5 (𝐵 ∈ suc 𝑦 → (𝐵𝑦𝐵 = 𝑦))
20 sdomtr 8851 . . . . . . . . 9 (((𝑅1𝐵) ≺ (𝑅1𝑦) ∧ (𝑅1𝑦) ≺ (𝑅1‘suc 𝑦)) → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))
2120expcom 413 . . . . . . . 8 ((𝑅1𝑦) ≺ (𝑅1‘suc 𝑦) → ((𝑅1𝐵) ≺ (𝑅1𝑦) → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦)))
22 fvex 6769 . . . . . . . . . 10 (𝑅1𝑦) ∈ V
2322canth2 8866 . . . . . . . . 9 (𝑅1𝑦) ≺ 𝒫 (𝑅1𝑦)
24 r1suc 9459 . . . . . . . . 9 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
2523, 24breqtrrid 5108 . . . . . . . 8 (𝑦 ∈ On → (𝑅1𝑦) ≺ (𝑅1‘suc 𝑦))
2621, 25syl11 33 . . . . . . 7 ((𝑅1𝐵) ≺ (𝑅1𝑦) → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦)))
2726imim2i 16 . . . . . 6 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵𝑦 → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
28 fveq2 6756 . . . . . . . . 9 (𝐵 = 𝑦 → (𝑅1𝐵) = (𝑅1𝑦))
2928breq1d 5080 . . . . . . . 8 (𝐵 = 𝑦 → ((𝑅1𝐵) ≺ (𝑅1‘suc 𝑦) ↔ (𝑅1𝑦) ≺ (𝑅1‘suc 𝑦)))
3025, 29syl5ibr 245 . . . . . . 7 (𝐵 = 𝑦 → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦)))
3130a1i 11 . . . . . 6 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵 = 𝑦 → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
3227, 31jaod 855 . . . . 5 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → ((𝐵𝑦𝐵 = 𝑦) → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
3319, 32syl5 34 . . . 4 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵 ∈ suc 𝑦 → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
3433com3r 87 . . 3 (𝑦 ∈ On → ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵 ∈ suc 𝑦 → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
35 limuni 6311 . . . . . . 7 (Lim 𝑥𝑥 = 𝑥)
3635eleq2d 2824 . . . . . 6 (Lim 𝑥 → (𝐵𝑥𝐵 𝑥))
37 eluni2 4840 . . . . . 6 (𝐵 𝑥 ↔ ∃𝑦𝑥 𝐵𝑦)
3836, 37bitrdi 286 . . . . 5 (Lim 𝑥 → (𝐵𝑥 ↔ ∃𝑦𝑥 𝐵𝑦))
39 r19.29 3183 . . . . . . 7 ((∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ ∃𝑦𝑥 𝐵𝑦) → ∃𝑦𝑥 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦))
40 fvex 6769 . . . . . . . . . 10 (𝑅1𝑥) ∈ V
41 ssiun2 4973 . . . . . . . . . . 11 (𝑦𝑥 → (𝑅1𝑦) ⊆ 𝑦𝑥 (𝑅1𝑦))
42 vex 3426 . . . . . . . . . . . . 13 𝑥 ∈ V
43 r1lim 9461 . . . . . . . . . . . . 13 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
4442, 43mpan 686 . . . . . . . . . . . 12 (Lim 𝑥 → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
4544sseq2d 3949 . . . . . . . . . . 11 (Lim 𝑥 → ((𝑅1𝑦) ⊆ (𝑅1𝑥) ↔ (𝑅1𝑦) ⊆ 𝑦𝑥 (𝑅1𝑦)))
4641, 45syl5ibr 245 . . . . . . . . . 10 (Lim 𝑥 → (𝑦𝑥 → (𝑅1𝑦) ⊆ (𝑅1𝑥)))
47 ssdomg 8741 . . . . . . . . . 10 ((𝑅1𝑥) ∈ V → ((𝑅1𝑦) ⊆ (𝑅1𝑥) → (𝑅1𝑦) ≼ (𝑅1𝑥)))
4840, 46, 47mpsylsyld 69 . . . . . . . . 9 (Lim 𝑥 → (𝑦𝑥 → (𝑅1𝑦) ≼ (𝑅1𝑥)))
49 id 22 . . . . . . . . . . 11 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)))
5049imp 406 . . . . . . . . . 10 (((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑦))
51 sdomdomtr 8846 . . . . . . . . . . 11 (((𝑅1𝐵) ≺ (𝑅1𝑦) ∧ (𝑅1𝑦) ≼ (𝑅1𝑥)) → (𝑅1𝐵) ≺ (𝑅1𝑥))
5251expcom 413 . . . . . . . . . 10 ((𝑅1𝑦) ≼ (𝑅1𝑥) → ((𝑅1𝐵) ≺ (𝑅1𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥)))
5350, 52syl5 34 . . . . . . . . 9 ((𝑅1𝑦) ≼ (𝑅1𝑥) → (((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥)))
5448, 53syl6 35 . . . . . . . 8 (Lim 𝑥 → (𝑦𝑥 → (((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥))))
5554rexlimdv 3211 . . . . . . 7 (Lim 𝑥 → (∃𝑦𝑥 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥)))
5639, 55syl5 34 . . . . . 6 (Lim 𝑥 → ((∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ ∃𝑦𝑥 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥)))
5756expcomd 416 . . . . 5 (Lim 𝑥 → (∃𝑦𝑥 𝐵𝑦 → (∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝑅1𝐵) ≺ (𝑅1𝑥))))
5838, 57sylbid 239 . . . 4 (Lim 𝑥 → (𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝑅1𝐵) ≺ (𝑅1𝑥))))
5958com23 86 . . 3 (Lim 𝑥 → (∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥))))
604, 8, 12, 16, 18, 34, 59tfinds 7681 . 2 (𝐴 ∈ On → (𝐵𝐴 → (𝑅1𝐵) ≺ (𝑅1𝐴)))
6160imp 406 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → (𝑅1𝐵) ≺ (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836   ciun 4921   class class class wbr 5070  Oncon0 6251  Lim wlim 6252  suc csuc 6253  cfv 6418  cdom 8689  csdm 8690  𝑅1cr1 9451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-r1 9453
This theorem is referenced by:  r111  9464  smobeth  10273  r1tskina  10469
  Copyright terms: Public domain W3C validator