Step | Hyp | Ref
| Expression |
1 | | eleq2 2827 |
. . . 4
⊢ (𝑥 = ∅ → (𝐵 ∈ 𝑥 ↔ 𝐵 ∈ ∅)) |
2 | | fveq2 6774 |
. . . . 5
⊢ (𝑥 = ∅ →
(𝑅1‘𝑥) =
(𝑅1‘∅)) |
3 | 2 | breq2d 5086 |
. . . 4
⊢ (𝑥 = ∅ →
((𝑅1‘𝐵) ≺ (𝑅1‘𝑥) ↔
(𝑅1‘𝐵) ≺
(𝑅1‘∅))) |
4 | 1, 3 | imbi12d 345 |
. . 3
⊢ (𝑥 = ∅ → ((𝐵 ∈ 𝑥 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥)) ↔ (𝐵 ∈ ∅ →
(𝑅1‘𝐵) ≺
(𝑅1‘∅)))) |
5 | | eleq2 2827 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐵 ∈ 𝑥 ↔ 𝐵 ∈ 𝑦)) |
6 | | fveq2 6774 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑅1‘𝑥) =
(𝑅1‘𝑦)) |
7 | 6 | breq2d 5086 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑅1‘𝐵) ≺
(𝑅1‘𝑥) ↔ (𝑅1‘𝐵) ≺
(𝑅1‘𝑦))) |
8 | 5, 7 | imbi12d 345 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐵 ∈ 𝑥 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥)) ↔ (𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)))) |
9 | | eleq2 2827 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (𝐵 ∈ 𝑥 ↔ 𝐵 ∈ suc 𝑦)) |
10 | | fveq2 6774 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (𝑅1‘𝑥) =
(𝑅1‘suc 𝑦)) |
11 | 10 | breq2d 5086 |
. . . 4
⊢ (𝑥 = suc 𝑦 → ((𝑅1‘𝐵) ≺
(𝑅1‘𝑥) ↔ (𝑅1‘𝐵) ≺
(𝑅1‘suc 𝑦))) |
12 | 9, 11 | imbi12d 345 |
. . 3
⊢ (𝑥 = suc 𝑦 → ((𝐵 ∈ 𝑥 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥)) ↔ (𝐵 ∈ suc 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘suc 𝑦)))) |
13 | | eleq2 2827 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝐵 ∈ 𝑥 ↔ 𝐵 ∈ 𝐴)) |
14 | | fveq2 6774 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑅1‘𝑥) =
(𝑅1‘𝐴)) |
15 | 14 | breq2d 5086 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑅1‘𝐵) ≺
(𝑅1‘𝑥) ↔ (𝑅1‘𝐵) ≺
(𝑅1‘𝐴))) |
16 | 13, 15 | imbi12d 345 |
. . 3
⊢ (𝑥 = 𝐴 → ((𝐵 ∈ 𝑥 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥)) ↔ (𝐵 ∈ 𝐴 → (𝑅1‘𝐵) ≺
(𝑅1‘𝐴)))) |
17 | | noel 4264 |
. . . 4
⊢ ¬
𝐵 ∈
∅ |
18 | 17 | pm2.21i 119 |
. . 3
⊢ (𝐵 ∈ ∅ →
(𝑅1‘𝐵) ≺
(𝑅1‘∅)) |
19 | | elsuci 6332 |
. . . . 5
⊢ (𝐵 ∈ suc 𝑦 → (𝐵 ∈ 𝑦 ∨ 𝐵 = 𝑦)) |
20 | | sdomtr 8902 |
. . . . . . . . 9
⊢
(((𝑅1‘𝐵) ≺ (𝑅1‘𝑦) ∧
(𝑅1‘𝑦) ≺ (𝑅1‘suc
𝑦)) →
(𝑅1‘𝐵) ≺ (𝑅1‘suc
𝑦)) |
21 | 20 | expcom 414 |
. . . . . . . 8
⊢
((𝑅1‘𝑦) ≺ (𝑅1‘suc
𝑦) →
((𝑅1‘𝐵) ≺ (𝑅1‘𝑦) →
(𝑅1‘𝐵) ≺ (𝑅1‘suc
𝑦))) |
22 | | fvex 6787 |
. . . . . . . . . 10
⊢
(𝑅1‘𝑦) ∈ V |
23 | 22 | canth2 8917 |
. . . . . . . . 9
⊢
(𝑅1‘𝑦) ≺ 𝒫
(𝑅1‘𝑦) |
24 | | r1suc 9528 |
. . . . . . . . 9
⊢ (𝑦 ∈ On →
(𝑅1‘suc 𝑦) = 𝒫
(𝑅1‘𝑦)) |
25 | 23, 24 | breqtrrid 5112 |
. . . . . . . 8
⊢ (𝑦 ∈ On →
(𝑅1‘𝑦) ≺ (𝑅1‘suc
𝑦)) |
26 | 21, 25 | syl11 33 |
. . . . . . 7
⊢
((𝑅1‘𝐵) ≺ (𝑅1‘𝑦) → (𝑦 ∈ On →
(𝑅1‘𝐵) ≺ (𝑅1‘suc
𝑦))) |
27 | 26 | imim2i 16 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → (𝐵 ∈ 𝑦 → (𝑦 ∈ On →
(𝑅1‘𝐵) ≺ (𝑅1‘suc
𝑦)))) |
28 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝐵 = 𝑦 → (𝑅1‘𝐵) =
(𝑅1‘𝑦)) |
29 | 28 | breq1d 5084 |
. . . . . . . 8
⊢ (𝐵 = 𝑦 → ((𝑅1‘𝐵) ≺
(𝑅1‘suc 𝑦) ↔ (𝑅1‘𝑦) ≺
(𝑅1‘suc 𝑦))) |
30 | 25, 29 | syl5ibr 245 |
. . . . . . 7
⊢ (𝐵 = 𝑦 → (𝑦 ∈ On →
(𝑅1‘𝐵) ≺ (𝑅1‘suc
𝑦))) |
31 | 30 | a1i 11 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → (𝐵 = 𝑦 → (𝑦 ∈ On →
(𝑅1‘𝐵) ≺ (𝑅1‘suc
𝑦)))) |
32 | 27, 31 | jaod 856 |
. . . . 5
⊢ ((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → ((𝐵 ∈ 𝑦 ∨ 𝐵 = 𝑦) → (𝑦 ∈ On →
(𝑅1‘𝐵) ≺ (𝑅1‘suc
𝑦)))) |
33 | 19, 32 | syl5 34 |
. . . 4
⊢ ((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → (𝐵 ∈ suc 𝑦 → (𝑦 ∈ On →
(𝑅1‘𝐵) ≺ (𝑅1‘suc
𝑦)))) |
34 | 33 | com3r 87 |
. . 3
⊢ (𝑦 ∈ On → ((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → (𝐵 ∈ suc 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘suc 𝑦)))) |
35 | | limuni 6326 |
. . . . . . 7
⊢ (Lim
𝑥 → 𝑥 = ∪ 𝑥) |
36 | 35 | eleq2d 2824 |
. . . . . 6
⊢ (Lim
𝑥 → (𝐵 ∈ 𝑥 ↔ 𝐵 ∈ ∪ 𝑥)) |
37 | | eluni2 4843 |
. . . . . 6
⊢ (𝐵 ∈ ∪ 𝑥
↔ ∃𝑦 ∈
𝑥 𝐵 ∈ 𝑦) |
38 | 36, 37 | bitrdi 287 |
. . . . 5
⊢ (Lim
𝑥 → (𝐵 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝑥 𝐵 ∈ 𝑦)) |
39 | | r19.29 3184 |
. . . . . . 7
⊢
((∀𝑦 ∈
𝑥 (𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) ∧ ∃𝑦 ∈ 𝑥 𝐵 ∈ 𝑦) → ∃𝑦 ∈ 𝑥 ((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) ∧ 𝐵 ∈ 𝑦)) |
40 | | fvex 6787 |
. . . . . . . . . 10
⊢
(𝑅1‘𝑥) ∈ V |
41 | | ssiun2 4977 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑥 → (𝑅1‘𝑦) ⊆ ∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦)) |
42 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
43 | | r1lim 9530 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) →
(𝑅1‘𝑥) = ∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦)) |
44 | 42, 43 | mpan 687 |
. . . . . . . . . . . 12
⊢ (Lim
𝑥 →
(𝑅1‘𝑥) = ∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦)) |
45 | 44 | sseq2d 3953 |
. . . . . . . . . . 11
⊢ (Lim
𝑥 →
((𝑅1‘𝑦) ⊆ (𝑅1‘𝑥) ↔
(𝑅1‘𝑦) ⊆ ∪
𝑦 ∈ 𝑥 (𝑅1‘𝑦))) |
46 | 41, 45 | syl5ibr 245 |
. . . . . . . . . 10
⊢ (Lim
𝑥 → (𝑦 ∈ 𝑥 → (𝑅1‘𝑦) ⊆
(𝑅1‘𝑥))) |
47 | | ssdomg 8786 |
. . . . . . . . . 10
⊢
((𝑅1‘𝑥) ∈ V →
((𝑅1‘𝑦) ⊆ (𝑅1‘𝑥) →
(𝑅1‘𝑦) ≼ (𝑅1‘𝑥))) |
48 | 40, 46, 47 | mpsylsyld 69 |
. . . . . . . . 9
⊢ (Lim
𝑥 → (𝑦 ∈ 𝑥 → (𝑅1‘𝑦) ≼
(𝑅1‘𝑥))) |
49 | | id 22 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → (𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦))) |
50 | 49 | imp 407 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) ∧ 𝐵 ∈ 𝑦) → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) |
51 | | sdomdomtr 8897 |
. . . . . . . . . . 11
⊢
(((𝑅1‘𝐵) ≺ (𝑅1‘𝑦) ∧
(𝑅1‘𝑦) ≼ (𝑅1‘𝑥)) →
(𝑅1‘𝐵) ≺ (𝑅1‘𝑥)) |
52 | 51 | expcom 414 |
. . . . . . . . . 10
⊢
((𝑅1‘𝑦) ≼ (𝑅1‘𝑥) →
((𝑅1‘𝐵) ≺ (𝑅1‘𝑦) →
(𝑅1‘𝐵) ≺ (𝑅1‘𝑥))) |
53 | 50, 52 | syl5 34 |
. . . . . . . . 9
⊢
((𝑅1‘𝑦) ≼ (𝑅1‘𝑥) → (((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) ∧ 𝐵 ∈ 𝑦) → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥))) |
54 | 48, 53 | syl6 35 |
. . . . . . . 8
⊢ (Lim
𝑥 → (𝑦 ∈ 𝑥 → (((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) ∧ 𝐵 ∈ 𝑦) → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥)))) |
55 | 54 | rexlimdv 3212 |
. . . . . . 7
⊢ (Lim
𝑥 → (∃𝑦 ∈ 𝑥 ((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) ∧ 𝐵 ∈ 𝑦) → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥))) |
56 | 39, 55 | syl5 34 |
. . . . . 6
⊢ (Lim
𝑥 → ((∀𝑦 ∈ 𝑥 (𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) ∧ ∃𝑦 ∈ 𝑥 𝐵 ∈ 𝑦) → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥))) |
57 | 56 | expcomd 417 |
. . . . 5
⊢ (Lim
𝑥 → (∃𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 → (∀𝑦 ∈ 𝑥 (𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥)))) |
58 | 38, 57 | sylbid 239 |
. . . 4
⊢ (Lim
𝑥 → (𝐵 ∈ 𝑥 → (∀𝑦 ∈ 𝑥 (𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥)))) |
59 | 58 | com23 86 |
. . 3
⊢ (Lim
𝑥 → (∀𝑦 ∈ 𝑥 (𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → (𝐵 ∈ 𝑥 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥)))) |
60 | 4, 8, 12, 16, 18, 34, 59 | tfinds 7706 |
. 2
⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → (𝑅1‘𝐵) ≺
(𝑅1‘𝐴))) |
61 | 60 | imp 407 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → (𝑅1‘𝐵) ≺
(𝑅1‘𝐴)) |