MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1sdom Structured version   Visualization version   GIF version

Theorem r1sdom 9734
Description: Each stage in the cumulative hierarchy is strictly larger than the last. (Contributed by Mario Carneiro, 19-Apr-2013.)
Assertion
Ref Expression
r1sdom ((𝐴 ∈ On ∧ 𝐵𝐴) → (𝑅1𝐵) ≺ (𝑅1𝐴))

Proof of Theorem r1sdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2818 . . . 4 (𝑥 = ∅ → (𝐵𝑥𝐵 ∈ ∅))
2 fveq2 6861 . . . . 5 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
32breq2d 5122 . . . 4 (𝑥 = ∅ → ((𝑅1𝐵) ≺ (𝑅1𝑥) ↔ (𝑅1𝐵) ≺ (𝑅1‘∅)))
41, 3imbi12d 344 . . 3 (𝑥 = ∅ → ((𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥)) ↔ (𝐵 ∈ ∅ → (𝑅1𝐵) ≺ (𝑅1‘∅))))
5 eleq2 2818 . . . 4 (𝑥 = 𝑦 → (𝐵𝑥𝐵𝑦))
6 fveq2 6861 . . . . 5 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
76breq2d 5122 . . . 4 (𝑥 = 𝑦 → ((𝑅1𝐵) ≺ (𝑅1𝑥) ↔ (𝑅1𝐵) ≺ (𝑅1𝑦)))
85, 7imbi12d 344 . . 3 (𝑥 = 𝑦 → ((𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥)) ↔ (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦))))
9 eleq2 2818 . . . 4 (𝑥 = suc 𝑦 → (𝐵𝑥𝐵 ∈ suc 𝑦))
10 fveq2 6861 . . . . 5 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
1110breq2d 5122 . . . 4 (𝑥 = suc 𝑦 → ((𝑅1𝐵) ≺ (𝑅1𝑥) ↔ (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦)))
129, 11imbi12d 344 . . 3 (𝑥 = suc 𝑦 → ((𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥)) ↔ (𝐵 ∈ suc 𝑦 → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
13 eleq2 2818 . . . 4 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
14 fveq2 6861 . . . . 5 (𝑥 = 𝐴 → (𝑅1𝑥) = (𝑅1𝐴))
1514breq2d 5122 . . . 4 (𝑥 = 𝐴 → ((𝑅1𝐵) ≺ (𝑅1𝑥) ↔ (𝑅1𝐵) ≺ (𝑅1𝐴)))
1613, 15imbi12d 344 . . 3 (𝑥 = 𝐴 → ((𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥)) ↔ (𝐵𝐴 → (𝑅1𝐵) ≺ (𝑅1𝐴))))
17 noel 4304 . . . 4 ¬ 𝐵 ∈ ∅
1817pm2.21i 119 . . 3 (𝐵 ∈ ∅ → (𝑅1𝐵) ≺ (𝑅1‘∅))
19 elsuci 6404 . . . . 5 (𝐵 ∈ suc 𝑦 → (𝐵𝑦𝐵 = 𝑦))
20 sdomtr 9085 . . . . . . . . 9 (((𝑅1𝐵) ≺ (𝑅1𝑦) ∧ (𝑅1𝑦) ≺ (𝑅1‘suc 𝑦)) → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))
2120expcom 413 . . . . . . . 8 ((𝑅1𝑦) ≺ (𝑅1‘suc 𝑦) → ((𝑅1𝐵) ≺ (𝑅1𝑦) → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦)))
22 fvex 6874 . . . . . . . . . 10 (𝑅1𝑦) ∈ V
2322canth2 9100 . . . . . . . . 9 (𝑅1𝑦) ≺ 𝒫 (𝑅1𝑦)
24 r1suc 9730 . . . . . . . . 9 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
2523, 24breqtrrid 5148 . . . . . . . 8 (𝑦 ∈ On → (𝑅1𝑦) ≺ (𝑅1‘suc 𝑦))
2621, 25syl11 33 . . . . . . 7 ((𝑅1𝐵) ≺ (𝑅1𝑦) → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦)))
2726imim2i 16 . . . . . 6 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵𝑦 → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
28 fveq2 6861 . . . . . . . . 9 (𝐵 = 𝑦 → (𝑅1𝐵) = (𝑅1𝑦))
2928breq1d 5120 . . . . . . . 8 (𝐵 = 𝑦 → ((𝑅1𝐵) ≺ (𝑅1‘suc 𝑦) ↔ (𝑅1𝑦) ≺ (𝑅1‘suc 𝑦)))
3025, 29imbitrrid 246 . . . . . . 7 (𝐵 = 𝑦 → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦)))
3130a1i 11 . . . . . 6 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵 = 𝑦 → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
3227, 31jaod 859 . . . . 5 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → ((𝐵𝑦𝐵 = 𝑦) → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
3319, 32syl5 34 . . . 4 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵 ∈ suc 𝑦 → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
3433com3r 87 . . 3 (𝑦 ∈ On → ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵 ∈ suc 𝑦 → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
35 limuni 6397 . . . . . . 7 (Lim 𝑥𝑥 = 𝑥)
3635eleq2d 2815 . . . . . 6 (Lim 𝑥 → (𝐵𝑥𝐵 𝑥))
37 eluni2 4878 . . . . . 6 (𝐵 𝑥 ↔ ∃𝑦𝑥 𝐵𝑦)
3836, 37bitrdi 287 . . . . 5 (Lim 𝑥 → (𝐵𝑥 ↔ ∃𝑦𝑥 𝐵𝑦))
39 r19.29 3095 . . . . . . 7 ((∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ ∃𝑦𝑥 𝐵𝑦) → ∃𝑦𝑥 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦))
40 fvex 6874 . . . . . . . . . 10 (𝑅1𝑥) ∈ V
41 ssiun2 5014 . . . . . . . . . . 11 (𝑦𝑥 → (𝑅1𝑦) ⊆ 𝑦𝑥 (𝑅1𝑦))
42 vex 3454 . . . . . . . . . . . . 13 𝑥 ∈ V
43 r1lim 9732 . . . . . . . . . . . . 13 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
4442, 43mpan 690 . . . . . . . . . . . 12 (Lim 𝑥 → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
4544sseq2d 3982 . . . . . . . . . . 11 (Lim 𝑥 → ((𝑅1𝑦) ⊆ (𝑅1𝑥) ↔ (𝑅1𝑦) ⊆ 𝑦𝑥 (𝑅1𝑦)))
4641, 45imbitrrid 246 . . . . . . . . . 10 (Lim 𝑥 → (𝑦𝑥 → (𝑅1𝑦) ⊆ (𝑅1𝑥)))
47 ssdomg 8974 . . . . . . . . . 10 ((𝑅1𝑥) ∈ V → ((𝑅1𝑦) ⊆ (𝑅1𝑥) → (𝑅1𝑦) ≼ (𝑅1𝑥)))
4840, 46, 47mpsylsyld 69 . . . . . . . . 9 (Lim 𝑥 → (𝑦𝑥 → (𝑅1𝑦) ≼ (𝑅1𝑥)))
49 id 22 . . . . . . . . . . 11 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)))
5049imp 406 . . . . . . . . . 10 (((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑦))
51 sdomdomtr 9080 . . . . . . . . . . 11 (((𝑅1𝐵) ≺ (𝑅1𝑦) ∧ (𝑅1𝑦) ≼ (𝑅1𝑥)) → (𝑅1𝐵) ≺ (𝑅1𝑥))
5251expcom 413 . . . . . . . . . 10 ((𝑅1𝑦) ≼ (𝑅1𝑥) → ((𝑅1𝐵) ≺ (𝑅1𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥)))
5350, 52syl5 34 . . . . . . . . 9 ((𝑅1𝑦) ≼ (𝑅1𝑥) → (((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥)))
5448, 53syl6 35 . . . . . . . 8 (Lim 𝑥 → (𝑦𝑥 → (((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥))))
5554rexlimdv 3133 . . . . . . 7 (Lim 𝑥 → (∃𝑦𝑥 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥)))
5639, 55syl5 34 . . . . . 6 (Lim 𝑥 → ((∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ ∃𝑦𝑥 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥)))
5756expcomd 416 . . . . 5 (Lim 𝑥 → (∃𝑦𝑥 𝐵𝑦 → (∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝑅1𝐵) ≺ (𝑅1𝑥))))
5838, 57sylbid 240 . . . 4 (Lim 𝑥 → (𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝑅1𝐵) ≺ (𝑅1𝑥))))
5958com23 86 . . 3 (Lim 𝑥 → (∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥))))
604, 8, 12, 16, 18, 34, 59tfinds 7839 . 2 (𝐴 ∈ On → (𝐵𝐴 → (𝑅1𝐵) ≺ (𝑅1𝐴)))
6160imp 406 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → (𝑅1𝐵) ≺ (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299  𝒫 cpw 4566   cuni 4874   ciun 4958   class class class wbr 5110  Oncon0 6335  Lim wlim 6336  suc csuc 6337  cfv 6514  cdom 8919  csdm 8920  𝑅1cr1 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-r1 9724
This theorem is referenced by:  r111  9735  smobeth  10546  r1tskina  10742
  Copyright terms: Public domain W3C validator