MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1sdom Structured version   Visualization version   GIF version

Theorem r1sdom 9662
Description: Each stage in the cumulative hierarchy is strictly larger than the last. (Contributed by Mario Carneiro, 19-Apr-2013.)
Assertion
Ref Expression
r1sdom ((𝐴 ∈ On ∧ 𝐵𝐴) → (𝑅1𝐵) ≺ (𝑅1𝐴))

Proof of Theorem r1sdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2820 . . . 4 (𝑥 = ∅ → (𝐵𝑥𝐵 ∈ ∅))
2 fveq2 6817 . . . . 5 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
32breq2d 5098 . . . 4 (𝑥 = ∅ → ((𝑅1𝐵) ≺ (𝑅1𝑥) ↔ (𝑅1𝐵) ≺ (𝑅1‘∅)))
41, 3imbi12d 344 . . 3 (𝑥 = ∅ → ((𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥)) ↔ (𝐵 ∈ ∅ → (𝑅1𝐵) ≺ (𝑅1‘∅))))
5 eleq2 2820 . . . 4 (𝑥 = 𝑦 → (𝐵𝑥𝐵𝑦))
6 fveq2 6817 . . . . 5 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
76breq2d 5098 . . . 4 (𝑥 = 𝑦 → ((𝑅1𝐵) ≺ (𝑅1𝑥) ↔ (𝑅1𝐵) ≺ (𝑅1𝑦)))
85, 7imbi12d 344 . . 3 (𝑥 = 𝑦 → ((𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥)) ↔ (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦))))
9 eleq2 2820 . . . 4 (𝑥 = suc 𝑦 → (𝐵𝑥𝐵 ∈ suc 𝑦))
10 fveq2 6817 . . . . 5 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
1110breq2d 5098 . . . 4 (𝑥 = suc 𝑦 → ((𝑅1𝐵) ≺ (𝑅1𝑥) ↔ (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦)))
129, 11imbi12d 344 . . 3 (𝑥 = suc 𝑦 → ((𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥)) ↔ (𝐵 ∈ suc 𝑦 → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
13 eleq2 2820 . . . 4 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
14 fveq2 6817 . . . . 5 (𝑥 = 𝐴 → (𝑅1𝑥) = (𝑅1𝐴))
1514breq2d 5098 . . . 4 (𝑥 = 𝐴 → ((𝑅1𝐵) ≺ (𝑅1𝑥) ↔ (𝑅1𝐵) ≺ (𝑅1𝐴)))
1613, 15imbi12d 344 . . 3 (𝑥 = 𝐴 → ((𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥)) ↔ (𝐵𝐴 → (𝑅1𝐵) ≺ (𝑅1𝐴))))
17 noel 4283 . . . 4 ¬ 𝐵 ∈ ∅
1817pm2.21i 119 . . 3 (𝐵 ∈ ∅ → (𝑅1𝐵) ≺ (𝑅1‘∅))
19 elsuci 6370 . . . . 5 (𝐵 ∈ suc 𝑦 → (𝐵𝑦𝐵 = 𝑦))
20 sdomtr 9023 . . . . . . . . 9 (((𝑅1𝐵) ≺ (𝑅1𝑦) ∧ (𝑅1𝑦) ≺ (𝑅1‘suc 𝑦)) → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))
2120expcom 413 . . . . . . . 8 ((𝑅1𝑦) ≺ (𝑅1‘suc 𝑦) → ((𝑅1𝐵) ≺ (𝑅1𝑦) → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦)))
22 fvex 6830 . . . . . . . . . 10 (𝑅1𝑦) ∈ V
2322canth2 9038 . . . . . . . . 9 (𝑅1𝑦) ≺ 𝒫 (𝑅1𝑦)
24 r1suc 9658 . . . . . . . . 9 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
2523, 24breqtrrid 5124 . . . . . . . 8 (𝑦 ∈ On → (𝑅1𝑦) ≺ (𝑅1‘suc 𝑦))
2621, 25syl11 33 . . . . . . 7 ((𝑅1𝐵) ≺ (𝑅1𝑦) → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦)))
2726imim2i 16 . . . . . 6 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵𝑦 → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
28 fveq2 6817 . . . . . . . . 9 (𝐵 = 𝑦 → (𝑅1𝐵) = (𝑅1𝑦))
2928breq1d 5096 . . . . . . . 8 (𝐵 = 𝑦 → ((𝑅1𝐵) ≺ (𝑅1‘suc 𝑦) ↔ (𝑅1𝑦) ≺ (𝑅1‘suc 𝑦)))
3025, 29imbitrrid 246 . . . . . . 7 (𝐵 = 𝑦 → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦)))
3130a1i 11 . . . . . 6 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵 = 𝑦 → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
3227, 31jaod 859 . . . . 5 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → ((𝐵𝑦𝐵 = 𝑦) → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
3319, 32syl5 34 . . . 4 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵 ∈ suc 𝑦 → (𝑦 ∈ On → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
3433com3r 87 . . 3 (𝑦 ∈ On → ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵 ∈ suc 𝑦 → (𝑅1𝐵) ≺ (𝑅1‘suc 𝑦))))
35 limuni 6363 . . . . . . 7 (Lim 𝑥𝑥 = 𝑥)
3635eleq2d 2817 . . . . . 6 (Lim 𝑥 → (𝐵𝑥𝐵 𝑥))
37 eluni2 4858 . . . . . 6 (𝐵 𝑥 ↔ ∃𝑦𝑥 𝐵𝑦)
3836, 37bitrdi 287 . . . . 5 (Lim 𝑥 → (𝐵𝑥 ↔ ∃𝑦𝑥 𝐵𝑦))
39 r19.29 3095 . . . . . . 7 ((∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ ∃𝑦𝑥 𝐵𝑦) → ∃𝑦𝑥 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦))
40 fvex 6830 . . . . . . . . . 10 (𝑅1𝑥) ∈ V
41 ssiun2 4991 . . . . . . . . . . 11 (𝑦𝑥 → (𝑅1𝑦) ⊆ 𝑦𝑥 (𝑅1𝑦))
42 vex 3440 . . . . . . . . . . . . 13 𝑥 ∈ V
43 r1lim 9660 . . . . . . . . . . . . 13 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
4442, 43mpan 690 . . . . . . . . . . . 12 (Lim 𝑥 → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
4544sseq2d 3962 . . . . . . . . . . 11 (Lim 𝑥 → ((𝑅1𝑦) ⊆ (𝑅1𝑥) ↔ (𝑅1𝑦) ⊆ 𝑦𝑥 (𝑅1𝑦)))
4641, 45imbitrrid 246 . . . . . . . . . 10 (Lim 𝑥 → (𝑦𝑥 → (𝑅1𝑦) ⊆ (𝑅1𝑥)))
47 ssdomg 8917 . . . . . . . . . 10 ((𝑅1𝑥) ∈ V → ((𝑅1𝑦) ⊆ (𝑅1𝑥) → (𝑅1𝑦) ≼ (𝑅1𝑥)))
4840, 46, 47mpsylsyld 69 . . . . . . . . 9 (Lim 𝑥 → (𝑦𝑥 → (𝑅1𝑦) ≼ (𝑅1𝑥)))
49 id 22 . . . . . . . . . . 11 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)))
5049imp 406 . . . . . . . . . 10 (((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑦))
51 sdomdomtr 9018 . . . . . . . . . . 11 (((𝑅1𝐵) ≺ (𝑅1𝑦) ∧ (𝑅1𝑦) ≼ (𝑅1𝑥)) → (𝑅1𝐵) ≺ (𝑅1𝑥))
5251expcom 413 . . . . . . . . . 10 ((𝑅1𝑦) ≼ (𝑅1𝑥) → ((𝑅1𝐵) ≺ (𝑅1𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥)))
5350, 52syl5 34 . . . . . . . . 9 ((𝑅1𝑦) ≼ (𝑅1𝑥) → (((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥)))
5448, 53syl6 35 . . . . . . . 8 (Lim 𝑥 → (𝑦𝑥 → (((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥))))
5554rexlimdv 3131 . . . . . . 7 (Lim 𝑥 → (∃𝑦𝑥 ((𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥)))
5639, 55syl5 34 . . . . . 6 (Lim 𝑥 → ((∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) ∧ ∃𝑦𝑥 𝐵𝑦) → (𝑅1𝐵) ≺ (𝑅1𝑥)))
5756expcomd 416 . . . . 5 (Lim 𝑥 → (∃𝑦𝑥 𝐵𝑦 → (∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝑅1𝐵) ≺ (𝑅1𝑥))))
5838, 57sylbid 240 . . . 4 (Lim 𝑥 → (𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝑅1𝐵) ≺ (𝑅1𝑥))))
5958com23 86 . . 3 (Lim 𝑥 → (∀𝑦𝑥 (𝐵𝑦 → (𝑅1𝐵) ≺ (𝑅1𝑦)) → (𝐵𝑥 → (𝑅1𝐵) ≺ (𝑅1𝑥))))
604, 8, 12, 16, 18, 34, 59tfinds 7785 . 2 (𝐴 ∈ On → (𝐵𝐴 → (𝑅1𝐵) ≺ (𝑅1𝐴)))
6160imp 406 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → (𝑅1𝐵) ≺ (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3897  c0 4278  𝒫 cpw 4545   cuni 4854   ciun 4936   class class class wbr 5086  Oncon0 6301  Lim wlim 6302  suc csuc 6303  cfv 6476  cdom 8862  csdm 8863  𝑅1cr1 9650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-r1 9652
This theorem is referenced by:  r111  9663  smobeth  10472  r1tskina  10668
  Copyright terms: Public domain W3C validator