MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimclim Structured version   Visualization version   GIF version

Theorem rlimclim 15236
Description: A sequence on an upper integer set converges in the real sense iff it converges in the integer sense. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimclim.1 𝑍 = (ℤ𝑀)
rlimclim.2 (𝜑𝑀 ∈ ℤ)
rlimclim.3 (𝜑𝐹:𝑍⟶ℂ)
Assertion
Ref Expression
rlimclim (𝜑 → (𝐹𝑟 𝐴𝐹𝐴))

Proof of Theorem rlimclim
Dummy variables 𝑤 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimclim.1 . . 3 𝑍 = (ℤ𝑀)
2 rlimclim.2 . . . 4 (𝜑𝑀 ∈ ℤ)
32adantr 480 . . 3 ((𝜑𝐹𝑟 𝐴) → 𝑀 ∈ ℤ)
4 simpr 484 . . 3 ((𝜑𝐹𝑟 𝐴) → 𝐹𝑟 𝐴)
5 rlimclim.3 . . . . 5 (𝜑𝐹:𝑍⟶ℂ)
6 fdm 6605 . . . . 5 (𝐹:𝑍⟶ℂ → dom 𝐹 = 𝑍)
7 eqimss2 3982 . . . . 5 (dom 𝐹 = 𝑍𝑍 ⊆ dom 𝐹)
85, 6, 73syl 18 . . . 4 (𝜑𝑍 ⊆ dom 𝐹)
98adantr 480 . . 3 ((𝜑𝐹𝑟 𝐴) → 𝑍 ⊆ dom 𝐹)
101, 3, 4, 9rlimclim1 15235 . 2 ((𝜑𝐹𝑟 𝐴) → 𝐹𝐴)
11 climcl 15189 . . . 4 (𝐹𝐴𝐴 ∈ ℂ)
1211adantl 481 . . 3 ((𝜑𝐹𝐴) → 𝐴 ∈ ℂ)
132ad2antrr 722 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
14 simpr 484 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
15 eqidd 2740 . . . . . 6 ((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
16 simplr 765 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → 𝐹𝐴)
171, 13, 14, 15, 16climi2 15201 . . . . 5 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → ∃𝑧𝑍𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
18 uzssz 12585 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
191, 18eqsstri 3959 . . . . . . 7 𝑍 ⊆ ℤ
20 zssre 12309 . . . . . . 7 ℤ ⊆ ℝ
2119, 20sstri 3934 . . . . . 6 𝑍 ⊆ ℝ
22 fveq2 6768 . . . . . . . . . . . . 13 (𝑘 = 𝑤 → (𝐹𝑘) = (𝐹𝑤))
2322fvoveq1d 7290 . . . . . . . . . . . 12 (𝑘 = 𝑤 → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘((𝐹𝑤) − 𝐴)))
2423breq1d 5088 . . . . . . . . . . 11 (𝑘 = 𝑤 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑦 ↔ (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
25 simplrr 774 . . . . . . . . . . 11 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
26 simplrl 773 . . . . . . . . . . . . 13 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑧𝑍)
2719, 26sselid 3923 . . . . . . . . . . . 12 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑧 ∈ ℤ)
28 simprl 767 . . . . . . . . . . . . 13 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑤𝑍)
2919, 28sselid 3923 . . . . . . . . . . . 12 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑤 ∈ ℤ)
30 simprr 769 . . . . . . . . . . . 12 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑧𝑤)
31 eluz2 12570 . . . . . . . . . . . 12 (𝑤 ∈ (ℤ𝑧) ↔ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝑧𝑤))
3227, 29, 30, 31syl3anbrc 1341 . . . . . . . . . . 11 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑤 ∈ (ℤ𝑧))
3324, 25, 32rspcdva 3562 . . . . . . . . . 10 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)
3433expr 456 . . . . . . . . 9 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ 𝑤𝑍) → (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
3534ralrimiva 3109 . . . . . . . 8 ((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) → ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
3635expr 456 . . . . . . 7 ((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝑍) → (∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 → ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
3736reximdva 3204 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → (∃𝑧𝑍𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 → ∃𝑧𝑍𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
38 ssrexv 3992 . . . . . 6 (𝑍 ⊆ ℝ → (∃𝑧𝑍𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
3921, 37, 38mpsylsyld 69 . . . . 5 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → (∃𝑧𝑍𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 → ∃𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
4017, 39mpd 15 . . . 4 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
4140ralrimiva 3109 . . 3 ((𝜑𝐹𝐴) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
425adantr 480 . . . 4 ((𝜑𝐹𝐴) → 𝐹:𝑍⟶ℂ)
4321a1i 11 . . . 4 ((𝜑𝐹𝐴) → 𝑍 ⊆ ℝ)
44 eqidd 2740 . . . 4 (((𝜑𝐹𝐴) ∧ 𝑤𝑍) → (𝐹𝑤) = (𝐹𝑤))
4542, 43, 44rlim 15185 . . 3 ((𝜑𝐹𝐴) → (𝐹𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))))
4612, 41, 45mpbir2and 709 . 2 ((𝜑𝐹𝐴) → 𝐹𝑟 𝐴)
4710, 46impbida 797 1 (𝜑 → (𝐹𝑟 𝐴𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wral 3065  wrex 3066  wss 3891   class class class wbr 5078  dom cdm 5588  wf 6426  cfv 6430  (class class class)co 7268  cc 10853  cr 10854   < clt 10993  cle 10994  cmin 11188  cz 12302  cuz 12564  +crp 12712  abscabs 14926  cli 15174  𝑟 crli 15175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-z 12303  df-uz 12565  df-fl 13493  df-clim 15178  df-rlim 15179
This theorem is referenced by:  climmpt2  15263  climrecl  15273  climge0  15274  caurcvg  15369  caucvg  15371  climfsum  15513  divcnv  15546  dfef2  26101
  Copyright terms: Public domain W3C validator