MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimclim Structured version   Visualization version   GIF version

Theorem rlimclim 14764
Description: A sequence on an upper integer set converges in the real sense iff it converges in the integer sense. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimclim.1 𝑍 = (ℤ𝑀)
rlimclim.2 (𝜑𝑀 ∈ ℤ)
rlimclim.3 (𝜑𝐹:𝑍⟶ℂ)
Assertion
Ref Expression
rlimclim (𝜑 → (𝐹𝑟 𝐴𝐹𝐴))

Proof of Theorem rlimclim
Dummy variables 𝑤 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimclim.1 . . 3 𝑍 = (ℤ𝑀)
2 rlimclim.2 . . . 4 (𝜑𝑀 ∈ ℤ)
32adantr 473 . . 3 ((𝜑𝐹𝑟 𝐴) → 𝑀 ∈ ℤ)
4 simpr 477 . . 3 ((𝜑𝐹𝑟 𝐴) → 𝐹𝑟 𝐴)
5 rlimclim.3 . . . . 5 (𝜑𝐹:𝑍⟶ℂ)
6 fdm 6352 . . . . 5 (𝐹:𝑍⟶ℂ → dom 𝐹 = 𝑍)
7 eqimss2 3914 . . . . 5 (dom 𝐹 = 𝑍𝑍 ⊆ dom 𝐹)
85, 6, 73syl 18 . . . 4 (𝜑𝑍 ⊆ dom 𝐹)
98adantr 473 . . 3 ((𝜑𝐹𝑟 𝐴) → 𝑍 ⊆ dom 𝐹)
101, 3, 4, 9rlimclim1 14763 . 2 ((𝜑𝐹𝑟 𝐴) → 𝐹𝐴)
11 climcl 14717 . . . 4 (𝐹𝐴𝐴 ∈ ℂ)
1211adantl 474 . . 3 ((𝜑𝐹𝐴) → 𝐴 ∈ ℂ)
132ad2antrr 713 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
14 simpr 477 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
15 eqidd 2779 . . . . . 6 ((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
16 simplr 756 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → 𝐹𝐴)
171, 13, 14, 15, 16climi2 14729 . . . . 5 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → ∃𝑧𝑍𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
18 uzssz 12078 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
191, 18eqsstri 3891 . . . . . . 7 𝑍 ⊆ ℤ
20 zssre 11800 . . . . . . 7 ℤ ⊆ ℝ
2119, 20sstri 3867 . . . . . 6 𝑍 ⊆ ℝ
22 fveq2 6499 . . . . . . . . . . . . 13 (𝑘 = 𝑤 → (𝐹𝑘) = (𝐹𝑤))
2322fvoveq1d 6998 . . . . . . . . . . . 12 (𝑘 = 𝑤 → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘((𝐹𝑤) − 𝐴)))
2423breq1d 4939 . . . . . . . . . . 11 (𝑘 = 𝑤 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑦 ↔ (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
25 simplrr 765 . . . . . . . . . . 11 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
26 simplrl 764 . . . . . . . . . . . . 13 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑧𝑍)
2719, 26sseldi 3856 . . . . . . . . . . . 12 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑧 ∈ ℤ)
28 simprl 758 . . . . . . . . . . . . 13 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑤𝑍)
2919, 28sseldi 3856 . . . . . . . . . . . 12 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑤 ∈ ℤ)
30 simprr 760 . . . . . . . . . . . 12 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑧𝑤)
31 eluz2 12064 . . . . . . . . . . . 12 (𝑤 ∈ (ℤ𝑧) ↔ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝑧𝑤))
3227, 29, 30, 31syl3anbrc 1323 . . . . . . . . . . 11 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑤 ∈ (ℤ𝑧))
3324, 25, 32rspcdva 3541 . . . . . . . . . 10 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)
3433expr 449 . . . . . . . . 9 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ 𝑤𝑍) → (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
3534ralrimiva 3132 . . . . . . . 8 ((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) → ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
3635expr 449 . . . . . . 7 ((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝑍) → (∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 → ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
3736reximdva 3219 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → (∃𝑧𝑍𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 → ∃𝑧𝑍𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
38 ssrexv 3924 . . . . . 6 (𝑍 ⊆ ℝ → (∃𝑧𝑍𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
3921, 37, 38mpsylsyld 69 . . . . 5 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → (∃𝑧𝑍𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 → ∃𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
4017, 39mpd 15 . . . 4 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
4140ralrimiva 3132 . . 3 ((𝜑𝐹𝐴) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
425adantr 473 . . . 4 ((𝜑𝐹𝐴) → 𝐹:𝑍⟶ℂ)
4321a1i 11 . . . 4 ((𝜑𝐹𝐴) → 𝑍 ⊆ ℝ)
44 eqidd 2779 . . . 4 (((𝜑𝐹𝐴) ∧ 𝑤𝑍) → (𝐹𝑤) = (𝐹𝑤))
4542, 43, 44rlim 14713 . . 3 ((𝜑𝐹𝐴) → (𝐹𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))))
4612, 41, 45mpbir2and 700 . 2 ((𝜑𝐹𝐴) → 𝐹𝑟 𝐴)
4710, 46impbida 788 1 (𝜑 → (𝐹𝑟 𝐴𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wral 3088  wrex 3089  wss 3829   class class class wbr 4929  dom cdm 5407  wf 6184  cfv 6188  (class class class)co 6976  cc 10333  cr 10334   < clt 10474  cle 10475  cmin 10670  cz 11793  cuz 12058  +crp 12204  abscabs 14454  cli 14702  𝑟 crli 14703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-sup 8701  df-inf 8702  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-n0 11708  df-z 11794  df-uz 12059  df-fl 12977  df-clim 14706  df-rlim 14707
This theorem is referenced by:  climmpt2  14791  climrecl  14801  climge0  14802  caurcvg  14894  caucvg  14896  climfsum  15035  divcnv  15068  dfef2  25250
  Copyright terms: Public domain W3C validator