Step | Hyp | Ref
| Expression |
1 | | rlimclim.1 |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | | rlimclim.2 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | 2 | adantr 482 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝐴) → 𝑀 ∈ ℤ) |
4 | | simpr 486 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝐴) → 𝐹 ⇝𝑟 𝐴) |
5 | | rlimclim.3 |
. . . . 5
⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
6 | | fdm 6639 |
. . . . 5
⊢ (𝐹:𝑍⟶ℂ → dom 𝐹 = 𝑍) |
7 | | eqimss2 3983 |
. . . . 5
⊢ (dom
𝐹 = 𝑍 → 𝑍 ⊆ dom 𝐹) |
8 | 5, 6, 7 | 3syl 18 |
. . . 4
⊢ (𝜑 → 𝑍 ⊆ dom 𝐹) |
9 | 8 | adantr 482 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝐴) → 𝑍 ⊆ dom 𝐹) |
10 | 1, 3, 4, 9 | rlimclim1 15299 |
. 2
⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝐴) → 𝐹 ⇝ 𝐴) |
11 | | climcl 15253 |
. . . 4
⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
12 | 11 | adantl 483 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → 𝐴 ∈ ℂ) |
13 | 2 | ad2antrr 724 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) → 𝑀 ∈
ℤ) |
14 | | simpr 486 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈
ℝ+) |
15 | | eqidd 2737 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
16 | | simplr 767 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) → 𝐹 ⇝ 𝐴) |
17 | 1, 13, 14, 15, 16 | climi2 15265 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) →
∃𝑧 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑧)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦) |
18 | | uzssz 12649 |
. . . . . . . 8
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
19 | 1, 18 | eqsstri 3960 |
. . . . . . 7
⊢ 𝑍 ⊆
ℤ |
20 | | zssre 12372 |
. . . . . . 7
⊢ ℤ
⊆ ℝ |
21 | 19, 20 | sstri 3935 |
. . . . . 6
⊢ 𝑍 ⊆
ℝ |
22 | | fveq2 6804 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑤 → (𝐹‘𝑘) = (𝐹‘𝑤)) |
23 | 22 | fvoveq1d 7329 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑤 → (abs‘((𝐹‘𝑘) − 𝐴)) = (abs‘((𝐹‘𝑤) − 𝐴))) |
24 | 23 | breq1d 5091 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑤 → ((abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦 ↔ (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦)) |
25 | | simplrr 776 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑧)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤)) → ∀𝑘 ∈ (ℤ≥‘𝑧)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦) |
26 | | simplrl 775 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑧)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤)) → 𝑧 ∈ 𝑍) |
27 | 19, 26 | sselid 3924 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑧)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤)) → 𝑧 ∈ ℤ) |
28 | | simprl 769 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑧)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤)) → 𝑤 ∈ 𝑍) |
29 | 19, 28 | sselid 3924 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑧)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤)) → 𝑤 ∈ ℤ) |
30 | | simprr 771 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑧)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤)) → 𝑧 ≤ 𝑤) |
31 | | eluz2 12634 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈
(ℤ≥‘𝑧) ↔ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝑧 ≤ 𝑤)) |
32 | 27, 29, 30, 31 | syl3anbrc 1343 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑧)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤)) → 𝑤 ∈ (ℤ≥‘𝑧)) |
33 | 24, 25, 32 | rspcdva 3567 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑧)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤)) → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦) |
34 | 33 | expr 458 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑧)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦)) ∧ 𝑤 ∈ 𝑍) → (𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦)) |
35 | 34 | ralrimiva 3140 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑧)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦)) → ∀𝑤 ∈ 𝑍 (𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦)) |
36 | 35 | expr 458 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑧)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦 → ∀𝑤 ∈ 𝑍 (𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) |
37 | 36 | reximdva 3162 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) →
(∃𝑧 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑧)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦 → ∃𝑧 ∈ 𝑍 ∀𝑤 ∈ 𝑍 (𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) |
38 | | ssrexv 3993 |
. . . . . 6
⊢ (𝑍 ⊆ ℝ →
(∃𝑧 ∈ 𝑍 ∀𝑤 ∈ 𝑍 (𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑍 (𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) |
39 | 21, 37, 38 | mpsylsyld 69 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) →
(∃𝑧 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑧)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑍 (𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) |
40 | 17, 39 | mpd 15 |
. . . 4
⊢ (((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑦 ∈ ℝ+) →
∃𝑧 ∈ ℝ
∀𝑤 ∈ 𝑍 (𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦)) |
41 | 40 | ralrimiva 3140 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑍 (𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦)) |
42 | 5 | adantr 482 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → 𝐹:𝑍⟶ℂ) |
43 | 21 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → 𝑍 ⊆ ℝ) |
44 | | eqidd 2737 |
. . . 4
⊢ (((𝜑 ∧ 𝐹 ⇝ 𝐴) ∧ 𝑤 ∈ 𝑍) → (𝐹‘𝑤) = (𝐹‘𝑤)) |
45 | 42, 43, 44 | rlim 15249 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → (𝐹 ⇝𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+
∃𝑧 ∈ ℝ
∀𝑤 ∈ 𝑍 (𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦)))) |
46 | 12, 41, 45 | mpbir2and 711 |
. 2
⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → 𝐹 ⇝𝑟 𝐴) |
47 | 10, 46 | impbida 799 |
1
⊢ (𝜑 → (𝐹 ⇝𝑟 𝐴 ↔ 𝐹 ⇝ 𝐴)) |