MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimclim Structured version   Visualization version   GIF version

Theorem rlimclim 15300
Description: A sequence on an upper integer set converges in the real sense iff it converges in the integer sense. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimclim.1 𝑍 = (ℤ𝑀)
rlimclim.2 (𝜑𝑀 ∈ ℤ)
rlimclim.3 (𝜑𝐹:𝑍⟶ℂ)
Assertion
Ref Expression
rlimclim (𝜑 → (𝐹𝑟 𝐴𝐹𝐴))

Proof of Theorem rlimclim
Dummy variables 𝑤 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimclim.1 . . 3 𝑍 = (ℤ𝑀)
2 rlimclim.2 . . . 4 (𝜑𝑀 ∈ ℤ)
32adantr 482 . . 3 ((𝜑𝐹𝑟 𝐴) → 𝑀 ∈ ℤ)
4 simpr 486 . . 3 ((𝜑𝐹𝑟 𝐴) → 𝐹𝑟 𝐴)
5 rlimclim.3 . . . . 5 (𝜑𝐹:𝑍⟶ℂ)
6 fdm 6639 . . . . 5 (𝐹:𝑍⟶ℂ → dom 𝐹 = 𝑍)
7 eqimss2 3983 . . . . 5 (dom 𝐹 = 𝑍𝑍 ⊆ dom 𝐹)
85, 6, 73syl 18 . . . 4 (𝜑𝑍 ⊆ dom 𝐹)
98adantr 482 . . 3 ((𝜑𝐹𝑟 𝐴) → 𝑍 ⊆ dom 𝐹)
101, 3, 4, 9rlimclim1 15299 . 2 ((𝜑𝐹𝑟 𝐴) → 𝐹𝐴)
11 climcl 15253 . . . 4 (𝐹𝐴𝐴 ∈ ℂ)
1211adantl 483 . . 3 ((𝜑𝐹𝐴) → 𝐴 ∈ ℂ)
132ad2antrr 724 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
14 simpr 486 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
15 eqidd 2737 . . . . . 6 ((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
16 simplr 767 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → 𝐹𝐴)
171, 13, 14, 15, 16climi2 15265 . . . . 5 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → ∃𝑧𝑍𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
18 uzssz 12649 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
191, 18eqsstri 3960 . . . . . . 7 𝑍 ⊆ ℤ
20 zssre 12372 . . . . . . 7 ℤ ⊆ ℝ
2119, 20sstri 3935 . . . . . 6 𝑍 ⊆ ℝ
22 fveq2 6804 . . . . . . . . . . . . 13 (𝑘 = 𝑤 → (𝐹𝑘) = (𝐹𝑤))
2322fvoveq1d 7329 . . . . . . . . . . . 12 (𝑘 = 𝑤 → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘((𝐹𝑤) − 𝐴)))
2423breq1d 5091 . . . . . . . . . . 11 (𝑘 = 𝑤 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑦 ↔ (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
25 simplrr 776 . . . . . . . . . . 11 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
26 simplrl 775 . . . . . . . . . . . . 13 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑧𝑍)
2719, 26sselid 3924 . . . . . . . . . . . 12 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑧 ∈ ℤ)
28 simprl 769 . . . . . . . . . . . . 13 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑤𝑍)
2919, 28sselid 3924 . . . . . . . . . . . 12 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑤 ∈ ℤ)
30 simprr 771 . . . . . . . . . . . 12 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑧𝑤)
31 eluz2 12634 . . . . . . . . . . . 12 (𝑤 ∈ (ℤ𝑧) ↔ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝑧𝑤))
3227, 29, 30, 31syl3anbrc 1343 . . . . . . . . . . 11 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑤 ∈ (ℤ𝑧))
3324, 25, 32rspcdva 3567 . . . . . . . . . 10 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)
3433expr 458 . . . . . . . . 9 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ 𝑤𝑍) → (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
3534ralrimiva 3140 . . . . . . . 8 ((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) → ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
3635expr 458 . . . . . . 7 ((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝑍) → (∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 → ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
3736reximdva 3162 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → (∃𝑧𝑍𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 → ∃𝑧𝑍𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
38 ssrexv 3993 . . . . . 6 (𝑍 ⊆ ℝ → (∃𝑧𝑍𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
3921, 37, 38mpsylsyld 69 . . . . 5 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → (∃𝑧𝑍𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 → ∃𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
4017, 39mpd 15 . . . 4 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
4140ralrimiva 3140 . . 3 ((𝜑𝐹𝐴) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
425adantr 482 . . . 4 ((𝜑𝐹𝐴) → 𝐹:𝑍⟶ℂ)
4321a1i 11 . . . 4 ((𝜑𝐹𝐴) → 𝑍 ⊆ ℝ)
44 eqidd 2737 . . . 4 (((𝜑𝐹𝐴) ∧ 𝑤𝑍) → (𝐹𝑤) = (𝐹𝑤))
4542, 43, 44rlim 15249 . . 3 ((𝜑𝐹𝐴) → (𝐹𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))))
4612, 41, 45mpbir2and 711 . 2 ((𝜑𝐹𝐴) → 𝐹𝑟 𝐴)
4710, 46impbida 799 1 (𝜑 → (𝐹𝑟 𝐴𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wral 3062  wrex 3071  wss 3892   class class class wbr 5081  dom cdm 5600  wf 6454  cfv 6458  (class class class)co 7307  cc 10915  cr 10916   < clt 11055  cle 11056  cmin 11251  cz 12365  cuz 12628  +crp 12776  abscabs 14990  cli 15238  𝑟 crli 15239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-pm 8649  df-en 8765  df-dom 8766  df-sdom 8767  df-sup 9245  df-inf 9246  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-n0 12280  df-z 12366  df-uz 12629  df-fl 13558  df-clim 15242  df-rlim 15243
This theorem is referenced by:  climmpt2  15327  climrecl  15337  climge0  15338  caurcvg  15433  caucvg  15435  climfsum  15577  divcnv  15610  dfef2  26165
  Copyright terms: Public domain W3C validator