MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimclim Structured version   Visualization version   GIF version

Theorem rlimclim 15460
Description: A sequence on an upper integer set converges in the real sense iff it converges in the integer sense. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimclim.1 𝑍 = (ℤ𝑀)
rlimclim.2 (𝜑𝑀 ∈ ℤ)
rlimclim.3 (𝜑𝐹:𝑍⟶ℂ)
Assertion
Ref Expression
rlimclim (𝜑 → (𝐹𝑟 𝐴𝐹𝐴))

Proof of Theorem rlimclim
Dummy variables 𝑤 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimclim.1 . . 3 𝑍 = (ℤ𝑀)
2 rlimclim.2 . . . 4 (𝜑𝑀 ∈ ℤ)
32adantr 480 . . 3 ((𝜑𝐹𝑟 𝐴) → 𝑀 ∈ ℤ)
4 simpr 484 . . 3 ((𝜑𝐹𝑟 𝐴) → 𝐹𝑟 𝐴)
5 rlimclim.3 . . . . 5 (𝜑𝐹:𝑍⟶ℂ)
6 fdm 6668 . . . . 5 (𝐹:𝑍⟶ℂ → dom 𝐹 = 𝑍)
7 eqimss2 3990 . . . . 5 (dom 𝐹 = 𝑍𝑍 ⊆ dom 𝐹)
85, 6, 73syl 18 . . . 4 (𝜑𝑍 ⊆ dom 𝐹)
98adantr 480 . . 3 ((𝜑𝐹𝑟 𝐴) → 𝑍 ⊆ dom 𝐹)
101, 3, 4, 9rlimclim1 15459 . 2 ((𝜑𝐹𝑟 𝐴) → 𝐹𝐴)
11 climcl 15413 . . . 4 (𝐹𝐴𝐴 ∈ ℂ)
1211adantl 481 . . 3 ((𝜑𝐹𝐴) → 𝐴 ∈ ℂ)
132ad2antrr 726 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
14 simpr 484 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
15 eqidd 2734 . . . . . 6 ((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
16 simplr 768 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → 𝐹𝐴)
171, 13, 14, 15, 16climi2 15425 . . . . 5 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → ∃𝑧𝑍𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
18 uzssz 12763 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
191, 18eqsstri 3977 . . . . . . 7 𝑍 ⊆ ℤ
20 zssre 12486 . . . . . . 7 ℤ ⊆ ℝ
2119, 20sstri 3940 . . . . . 6 𝑍 ⊆ ℝ
22 fveq2 6831 . . . . . . . . . . . . 13 (𝑘 = 𝑤 → (𝐹𝑘) = (𝐹𝑤))
2322fvoveq1d 7377 . . . . . . . . . . . 12 (𝑘 = 𝑤 → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘((𝐹𝑤) − 𝐴)))
2423breq1d 5105 . . . . . . . . . . 11 (𝑘 = 𝑤 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑦 ↔ (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
25 simplrr 777 . . . . . . . . . . 11 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
26 simplrl 776 . . . . . . . . . . . . 13 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑧𝑍)
2719, 26sselid 3928 . . . . . . . . . . . 12 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑧 ∈ ℤ)
28 simprl 770 . . . . . . . . . . . . 13 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑤𝑍)
2919, 28sselid 3928 . . . . . . . . . . . 12 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑤 ∈ ℤ)
30 simprr 772 . . . . . . . . . . . 12 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑧𝑤)
31 eluz2 12748 . . . . . . . . . . . 12 (𝑤 ∈ (ℤ𝑧) ↔ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝑧𝑤))
3227, 29, 30, 31syl3anbrc 1344 . . . . . . . . . . 11 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑤 ∈ (ℤ𝑧))
3324, 25, 32rspcdva 3574 . . . . . . . . . 10 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)
3433expr 456 . . . . . . . . 9 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ 𝑤𝑍) → (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
3534ralrimiva 3125 . . . . . . . 8 ((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) → ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
3635expr 456 . . . . . . 7 ((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝑍) → (∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 → ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
3736reximdva 3146 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → (∃𝑧𝑍𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 → ∃𝑧𝑍𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
38 ssrexv 4000 . . . . . 6 (𝑍 ⊆ ℝ → (∃𝑧𝑍𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
3921, 37, 38mpsylsyld 69 . . . . 5 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → (∃𝑧𝑍𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 → ∃𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
4017, 39mpd 15 . . . 4 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
4140ralrimiva 3125 . . 3 ((𝜑𝐹𝐴) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
425adantr 480 . . . 4 ((𝜑𝐹𝐴) → 𝐹:𝑍⟶ℂ)
4321a1i 11 . . . 4 ((𝜑𝐹𝐴) → 𝑍 ⊆ ℝ)
44 eqidd 2734 . . . 4 (((𝜑𝐹𝐴) ∧ 𝑤𝑍) → (𝐹𝑤) = (𝐹𝑤))
4542, 43, 44rlim 15409 . . 3 ((𝜑𝐹𝐴) → (𝐹𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))))
4612, 41, 45mpbir2and 713 . 2 ((𝜑𝐹𝐴) → 𝐹𝑟 𝐴)
4710, 46impbida 800 1 (𝜑 → (𝐹𝑟 𝐴𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  wss 3898   class class class wbr 5095  dom cdm 5621  wf 6485  cfv 6489  (class class class)co 7355  cc 11015  cr 11016   < clt 11157  cle 11158  cmin 11355  cz 12479  cuz 12742  +crp 12896  abscabs 15148  cli 15398  𝑟 crli 15399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-fl 13703  df-clim 15402  df-rlim 15403
This theorem is referenced by:  climmpt2  15487  climrecl  15497  climge0  15498  caurcvg  15591  caucvg  15593  climfsum  15734  divcnv  15767  dfef2  26928
  Copyright terms: Public domain W3C validator