MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1ord3g Structured version   Visualization version   GIF version

Theorem r1ord3g 9202
Description: Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.)
Assertion
Ref Expression
r1ord3g ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))

Proof of Theorem r1ord3g
StepHypRef Expression
1 r1funlim 9189 . . . . . 6 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 488 . . . . 5 Lim dom 𝑅1
3 limord 6244 . . . . 5 (Lim dom 𝑅1 → Ord dom 𝑅1)
4 ordsson 7498 . . . . 5 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
52, 3, 4mp2b 10 . . . 4 dom 𝑅1 ⊆ On
65sseli 3962 . . 3 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
75sseli 3962 . . 3 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
8 onsseleq 6226 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
96, 7, 8syl2an 597 . 2 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
10 r1tr 9199 . . . 4 Tr (𝑅1𝐵)
11 r1ordg 9201 . . . . 5 (𝐵 ∈ dom 𝑅1 → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
1211adantl 484 . . . 4 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
13 trss 5173 . . . 4 (Tr (𝑅1𝐵) → ((𝑅1𝐴) ∈ (𝑅1𝐵) → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
1410, 12, 13mpsylsyld 69 . . 3 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
15 fveq2 6664 . . . . 5 (𝐴 = 𝐵 → (𝑅1𝐴) = (𝑅1𝐵))
16 eqimss 4022 . . . . 5 ((𝑅1𝐴) = (𝑅1𝐵) → (𝑅1𝐴) ⊆ (𝑅1𝐵))
1715, 16syl 17 . . . 4 (𝐴 = 𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵))
1817a1i 11 . . 3 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴 = 𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
1914, 18jaod 855 . 2 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → ((𝐴𝐵𝐴 = 𝐵) → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
209, 19sylbid 242 1 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wss 3935  Tr wtr 5164  dom cdm 5549  Ord word 6184  Oncon0 6185  Lim wlim 6186  Fun wfun 6343  cfv 6349  𝑅1cr1 9185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-r1 9187
This theorem is referenced by:  r1ord3  9205  r1val1  9209  rankr1ag  9225  unwf  9233  rankelb  9247  rankonidlem  9251
  Copyright terms: Public domain W3C validator