MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1ord3g Structured version   Visualization version   GIF version

Theorem r1ord3g 9848
Description: Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.)
Assertion
Ref Expression
r1ord3g ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))

Proof of Theorem r1ord3g
StepHypRef Expression
1 r1funlim 9835 . . . . . 6 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 485 . . . . 5 Lim dom 𝑅1
3 limord 6455 . . . . 5 (Lim dom 𝑅1 → Ord dom 𝑅1)
4 ordsson 7818 . . . . 5 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
52, 3, 4mp2b 10 . . . 4 dom 𝑅1 ⊆ On
65sseli 4004 . . 3 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
75sseli 4004 . . 3 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
8 onsseleq 6436 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
96, 7, 8syl2an 595 . 2 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
10 r1tr 9845 . . . 4 Tr (𝑅1𝐵)
11 r1ordg 9847 . . . . 5 (𝐵 ∈ dom 𝑅1 → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
1211adantl 481 . . . 4 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
13 trss 5294 . . . 4 (Tr (𝑅1𝐵) → ((𝑅1𝐴) ∈ (𝑅1𝐵) → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
1410, 12, 13mpsylsyld 69 . . 3 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
15 fveq2 6920 . . . . 5 (𝐴 = 𝐵 → (𝑅1𝐴) = (𝑅1𝐵))
16 eqimss 4067 . . . . 5 ((𝑅1𝐴) = (𝑅1𝐵) → (𝑅1𝐴) ⊆ (𝑅1𝐵))
1715, 16syl 17 . . . 4 (𝐴 = 𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵))
1817a1i 11 . . 3 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴 = 𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
1914, 18jaod 858 . 2 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → ((𝐴𝐵𝐴 = 𝐵) → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
209, 19sylbid 240 1 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wss 3976  Tr wtr 5283  dom cdm 5700  Ord word 6394  Oncon0 6395  Lim wlim 6396  Fun wfun 6567  cfv 6573  𝑅1cr1 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-r1 9833
This theorem is referenced by:  r1ord3  9851  r1val1  9855  rankr1ag  9871  unwf  9879  rankelb  9893  rankonidlem  9897
  Copyright terms: Public domain W3C validator