![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1ord3g | Structured version Visualization version GIF version |
Description: Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.) |
Ref | Expression |
---|---|
r1ord3g | ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1funlim 9760 | . . . . . 6 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
2 | 1 | simpri 485 | . . . . 5 ⊢ Lim dom 𝑅1 |
3 | limord 6417 | . . . . 5 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
4 | ordsson 7766 | . . . . 5 ⊢ (Ord dom 𝑅1 → dom 𝑅1 ⊆ On) | |
5 | 2, 3, 4 | mp2b 10 | . . . 4 ⊢ dom 𝑅1 ⊆ On |
6 | 5 | sseli 3973 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ∈ On) |
7 | 5 | sseli 3973 | . . 3 ⊢ (𝐵 ∈ dom 𝑅1 → 𝐵 ∈ On) |
8 | onsseleq 6398 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
9 | 6, 7, 8 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
10 | r1tr 9770 | . . . 4 ⊢ Tr (𝑅1‘𝐵) | |
11 | r1ordg 9772 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑅1 → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ∈ (𝑅1‘𝐵))) | |
12 | 11 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ∈ (𝑅1‘𝐵))) |
13 | trss 5269 | . . . 4 ⊢ (Tr (𝑅1‘𝐵) → ((𝑅1‘𝐴) ∈ (𝑅1‘𝐵) → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) | |
14 | 10, 12, 13 | mpsylsyld 69 | . . 3 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
15 | fveq2 6884 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑅1‘𝐴) = (𝑅1‘𝐵)) | |
16 | eqimss 4035 | . . . . 5 ⊢ ((𝑅1‘𝐴) = (𝑅1‘𝐵) → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵)) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵)) |
18 | 17 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 = 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
19 | 14, 18 | jaod 856 | . 2 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
20 | 9, 19 | sylbid 239 | 1 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ⊆ wss 3943 Tr wtr 5258 dom cdm 5669 Ord word 6356 Oncon0 6357 Lim wlim 6358 Fun wfun 6530 ‘cfv 6536 𝑅1cr1 9756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-r1 9758 |
This theorem is referenced by: r1ord3 9776 r1val1 9780 rankr1ag 9796 unwf 9804 rankelb 9818 rankonidlem 9822 |
Copyright terms: Public domain | W3C validator |