![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1ord3g | Structured version Visualization version GIF version |
Description: Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.) |
Ref | Expression |
---|---|
r1ord3g | ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1funlim 8879 | . . . . . 6 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
2 | 1 | simpri 480 | . . . . 5 ⊢ Lim dom 𝑅1 |
3 | limord 6000 | . . . . 5 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
4 | ordsson 7223 | . . . . 5 ⊢ (Ord dom 𝑅1 → dom 𝑅1 ⊆ On) | |
5 | 2, 3, 4 | mp2b 10 | . . . 4 ⊢ dom 𝑅1 ⊆ On |
6 | 5 | sseli 3794 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ∈ On) |
7 | 5 | sseli 3794 | . . 3 ⊢ (𝐵 ∈ dom 𝑅1 → 𝐵 ∈ On) |
8 | onsseleq 5982 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
9 | 6, 7, 8 | syl2an 590 | . 2 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
10 | r1ordg 8891 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑅1 → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ∈ (𝑅1‘𝐵))) | |
11 | 10 | adantl 474 | . . . 4 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ∈ (𝑅1‘𝐵))) |
12 | r1tr 8889 | . . . . 5 ⊢ Tr (𝑅1‘𝐵) | |
13 | trss 4954 | . . . . 5 ⊢ (Tr (𝑅1‘𝐵) → ((𝑅1‘𝐴) ∈ (𝑅1‘𝐵) → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ ((𝑅1‘𝐴) ∈ (𝑅1‘𝐵) → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵)) |
15 | 11, 14 | syl6 35 | . . 3 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
16 | fveq2 6411 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑅1‘𝐴) = (𝑅1‘𝐵)) | |
17 | eqimss 3853 | . . . . 5 ⊢ ((𝑅1‘𝐴) = (𝑅1‘𝐵) → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵)) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵)) |
19 | 18 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 = 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
20 | 15, 19 | jaod 886 | . 2 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
21 | 9, 20 | sylbid 232 | 1 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∨ wo 874 = wceq 1653 ∈ wcel 2157 ⊆ wss 3769 Tr wtr 4945 dom cdm 5312 Ord word 5940 Oncon0 5941 Lim wlim 5942 Fun wfun 6095 ‘cfv 6101 𝑅1cr1 8875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-r1 8877 |
This theorem is referenced by: r1ord3 8895 r1val1 8899 rankr1ag 8915 unwf 8923 rankelb 8937 rankonidlem 8941 |
Copyright terms: Public domain | W3C validator |