| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1ord3g | Structured version Visualization version GIF version | ||
| Description: Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.) |
| Ref | Expression |
|---|---|
| r1ord3g | ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim 9659 | . . . . . 6 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 2 | 1 | simpri 485 | . . . . 5 ⊢ Lim dom 𝑅1 |
| 3 | limord 6367 | . . . . 5 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
| 4 | ordsson 7716 | . . . . 5 ⊢ (Ord dom 𝑅1 → dom 𝑅1 ⊆ On) | |
| 5 | 2, 3, 4 | mp2b 10 | . . . 4 ⊢ dom 𝑅1 ⊆ On |
| 6 | 5 | sseli 3925 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ∈ On) |
| 7 | 5 | sseli 3925 | . . 3 ⊢ (𝐵 ∈ dom 𝑅1 → 𝐵 ∈ On) |
| 8 | onsseleq 6347 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 9 | 6, 7, 8 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 10 | r1tr 9669 | . . . 4 ⊢ Tr (𝑅1‘𝐵) | |
| 11 | r1ordg 9671 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑅1 → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ∈ (𝑅1‘𝐵))) | |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ∈ (𝑅1‘𝐵))) |
| 13 | trss 5206 | . . . 4 ⊢ (Tr (𝑅1‘𝐵) → ((𝑅1‘𝐴) ∈ (𝑅1‘𝐵) → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) | |
| 14 | 10, 12, 13 | mpsylsyld 69 | . . 3 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
| 15 | fveq2 6822 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑅1‘𝐴) = (𝑅1‘𝐵)) | |
| 16 | eqimss 3988 | . . . . 5 ⊢ ((𝑅1‘𝐴) = (𝑅1‘𝐵) → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵)) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵)) |
| 18 | 17 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 = 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
| 19 | 14, 18 | jaod 859 | . 2 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
| 20 | 9, 19 | sylbid 240 | 1 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 Tr wtr 5196 dom cdm 5614 Ord word 6305 Oncon0 6306 Lim wlim 6307 Fun wfun 6475 ‘cfv 6481 𝑅1cr1 9655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 |
| This theorem is referenced by: r1ord3 9675 r1val1 9679 rankr1ag 9695 unwf 9703 rankelb 9717 rankonidlem 9721 |
| Copyright terms: Public domain | W3C validator |